Spectropolarimetric Observations of Supernovae

- 超新星爆発の偏光分光観測 -

田中 雅臣 Masaomi Tanaka

(National Astronomical Observatory of Japan)

光赤外偏光天文学の軌跡と今後

Subaru/FOCAS

Spectropolarimetric Observations of Supernovae

Why Spectropolarimetry
Observing Strategy
Results/Future

ΔP ~ 0.05 %

R ~ 600 (Δv~500 km/s) ΔP ~ 0.05 %

Supernova • End point of stellar life

Origin of elements

- Stellar nucleosynthesis
- Explosive nucleosynthesis
- Huge kinetic energy
 - Injection to ISM
 - Cosmic ray acceleration
- Gravitational wave source
- Neutrino source
 - SN 1987A (in LMC)

Long-standing problem

After Fe core collapse

Observations of supernovae

Geometry of supernovae

Mechanism of the explosion

Extragalactic Supernova @ 30 days

- Velocity ~ I0,000 km/s
- Radius ~ 2 x 10¹⁵ cm ~ 0.001pc
- T ~ n_e σ R ~ I0² (t/I0 days) ⁻²
 optically thick
- Distance ~ 30 Mpc (~10²⁶cm)
- Angular size ~10⁻⁶ arcsec
 point source

Optically thick

thin

Why spectropolarimetry

Continuum polarization

H/He

C/0

Line polarization

H/He

C/O heavy elements

Spectropolarimetric Observations of Supernovae

Why Spectropolarimetry
Observing Strategy
Results/Future

Polarization ~ 1 % Measurement error < 0.1 %

SN with ~16-18 mag

Spectroscopy

0.5-1 m

Spectropolarimetry

8-10 m

Optical light curve

8-10m級望遠鏡を、すぐ使う

R~500, $\Delta P < 0.1\%$ for 16-18 mag

Brief history...

1987: SN 1987A (LMC, 50 kpc) 1993: SN 1993J (M81, 3.6 Mpc)

 $\bullet \bullet \bullet$

1990-2000: 8-10m telescopes 2002: SN 2002ap (M74, 10 Mpc)

THE ASTROPHYSICAL JOURNAL, 580:L39–L42, 2002 November 20 © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Subaru/FOCAS

CfA

OPTICAL SPECTROPOLARIMETRY OF SN 2002ap: A HIGH-VELOCITY ASYMMETRIC EXPLOSION¹

K. S. KAWABATA,^{2,3} D. J. JEFFERY,⁴ M. IYE,^{2,5} Y. OHYAMA,⁶ G. KOSUGI,⁶ N. KASHIKAWA,² N. EBIZUKA,⁷ T. SASAKI,⁶
K. SEKIGUCHI,⁶ K. NOMOTO,^{8,9} P. MAZZALI,^{8,9,10} J. DENG,^{8,9} K. MAEDA,⁸ H. UMEDA,⁸ K. AOKI,⁶ Y. SAITO,² T. TAKATA,⁶
M. YOSHIDA,¹¹ R. ASAI,⁸ M. INATA,¹¹ K. OKITA,¹¹ K. OTA,^{2,8} T. OZAWA,¹² Y. SHIMIZU,¹¹ H. TAGUCHI,¹³
Y. YADOUMARU,¹² T. MISAWA,^{2,8} F. NAKATA,^{2,8} T. YAMADA,² I. TANAKA,² AND T. KODAMA¹⁴ *Received 2002 May 23; accepted 2002 October 15; published 2002 October 25*

PASJ: Publ. Astron. Soc. Japan **54**, 819–832, 2002 December 25 © 2002. Astronomical Society of Japan.

FOCAS: The Faint Object Camera and Spectrograph for the Subaru Telescope

Nobunari KASHIKAWA,^{1,2} Kentaro AOKI,³ Ryo ASAI,⁴ Noboru EBIZUKA,⁵ Motoko INATA,¹ Masanori IYE,^{1,2} Koji S. KAWABATA,¹ George KOSUGI,³ Youichi OHYAMA,³ Kiichi OKITA,¹ Tomohiko OZAWA,⁶ Yoshihiko SAITO,⁴ Toshiyuki SASAKI,³ Kazuhiro SEKIGUCHI,³ Yasuhiro SHIMIZU,⁷ Hiroko TAGUCHI,⁸ Tadafumi TAKATA,³ Yasushi YADOUMARU,⁶ and Michitoshi YOSHIDA^{1,7}

Kashikawa et al. 2002

As of 2007

No significant progress after 2002 2007: SN 2007gr (NGC 1058, 9 Mpc)

THE ASTROPHYSICAL JOURNAL, 689:1191–1198, 2008 December 20 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Subaru/FOCAS

OPTICAL SPECTROPOLARIMETRY AND ASPHERICITY OF THE TYPE Ic SN 2007gr¹ MASAOMI TANAKA,² KOJI S. KAWABATA,³ KEIICHI MAEDA,⁴ TAKASHI HATTORI,⁵ AND KEN'ICHI NOMOTO^{2,4} Received 2008 June 9; accepted 2008 August 6

Spectropolarimetry of SNe with Subaru/FOCAS PI: M. Tanaka Co-I: K. S. Kawabata, T. Hattori. E. Pian, K. Maeda, M. Yamanaka, K. Nomoto, P. A. Mazzali, K. Aoki, T. Sasaki, and M. Iye

Object	Туре	Date	Epoch	Mag	Quality	Ref.
SN 2005bf	lb	2005 May	+8	16	Good	MT+09
SN 2007gr	lc	2007 Ѕер	+21	14	Good	MT+08
SN 2009dc	la (sp-Ch)	2009 Apr/Jul	+6/+90	15/17	Good	MT+I0
SN 2009jf	lb	2009 Oct	+9.3	15	Good	MT+12
OT U2773	LBV?	2009 Oct		17	ISP	•••
SN 2009kk	la	2009 Oct	+2	15	Good	
SN 2009mi	lc	2010 Jan	+26.5	16	Good	MT+12
SN 2010ah	Ic broad	2010 Mar	~30 (disc)	19	Not good	•••
SN 2010cn	Ic broad/IIb	2010 May	2 (disc)	18	Good	in prep.

Spectropolarimetric Observations of Supernovae

Why Spectropolarimetry
Observing Strategy
Results/Future

What do we expect? (Continuum polarization)

Hoeflich 91, A&A, 246, 481

Vy (1000 km/s) O WE EXPECT? (Line polarization)

3D Monte-Carlo radiative transfer with polarization

Ø**x (1**000 km/s)

10.

see also Kasen+03, ApJ, 593, 788 Hole+10, ApJ, 720, 1500 Dessasrt & Hillier 11, MNRAS, 415, 3497

Homologous expansion

Diagnostic of the Geometry?

SN 2009jf (lb)

Not axisymmetric

(see also e.g., Kawabata+02, Wang+03, Maund+07)

SN 2009mi (lc)

Object	Туре	3D ?	Ref.
SN 2002ap	Ic broad	YES	Kawabata+02, Leonard+02, Wang+03
SN 2005bf	lb	YES	Maund+07, MT+09
SN 2007gr	Ic	No	MT+08
SN 2008D	lb	YES	Maund+09
SN 2009jf	lb	YES	MT+12
SN 2009mi	lc	YES	MT+12

Non-axisymmetry is common

(MT+2012, ApJ, 754, 63)

Hydrodynamic simulations

Observations

t ~ sec r ~ 10⁸ cm t ~ day - year r > 10¹⁴ cm

Geometry of supernovae

Non-axisymmetric element distribution

Overall shape? (Continuum polarization!) SN 2009jf (lb)

Interstellar Polarization (especially in the host galaxy)

magnetic field

O

Valenti+11

SN + ISP at 30 days

 $\overline{\mathbf{\cdot}}$

ISP < 9 % x E(B-V) Serkowski+75 ISP at ~100 days

ISP derived from "Unpolarized SN"

Polarization fitted by Serkowski's law

$$P(\lambda) = P_{\max} \exp \left[-K \ln^2 \left(\lambda_{\max}/\lambda\right)\right]$$

できたこと と できなかったこと

• できたこと

ガンマ線バースト

● ライン偏光 半径依存性がある+元素依存性がある ● できなかったこと ● 連続光偏光 「片手落ち」 8-10m望遠鏡を 何度も使う ● 統計的性質 全6天体のみ TMT時代

暗過ぎ

<u>ナスミス焦点での高精度偏光分光</u>

Spectropolarimetry of GRB-SNe On the sky

Zero polarization

SN 2003dh/GRB 030329 @ z=0.17
 R~20.8 (Kawabata et al. 2003)

(NASA

If line polarization is detected,

Non-axisymmetry of GRB-SNe

Non on-axis line of sight

Spectropolarimetry of supernovae

- Geometry/Mechanism of SN explosion
 - Subaru/FOCAS spectropolarimetry R~500, ΔP < 0.1% for 16-18 mag
- Results
 - Change in polarization angle associated with absorption line
 Non-axisymmetry of SN explosion
 - Continuum polarization is still missing

• Future