Extremely Faint Millimeter Sources Identified by Multi-Field Deep ALMA Survey and Subaru Follow-up Spectroscopy

Fujimoto et al. 2016 (ApJS, 222, 1)
Fujimoto et al. in prep.

Seiji Fujimoto (U. Tokyo)
Masami Ouchi (U. Tokyo, IPMU)
Yoshiaki Ono (U. Tokyo)
Takatoshi Shibuya (U. Tokyo)
Masafumi Ishigaki (U. Tokyo)
Hiroshi Nagai (NAOJ)
Rieko Momose (NAOJ)
- Resolve the Cosmic Infrared Background light (CIB)

- Origin of the Faint mm Source
This work:

Largest dataset of multi-field deep ALMA

-> Resolve CIB / Physical origins
Sample Selection

DATA: ALMA Band 6 & 7 (~submm/mm)

- **Our quite deep** 4 ALMA data (Ouchi+13, etc)
- **ALL** ALMA data so far archived (2012/12-2015/7)

Criteria:

- Noise level < 0.1 mJy
- No too Bright/Extended Sources

Total: 67 deep maps

Obs. hrs ~100 hrs (cf. typical obs. hrs ~4 hrs)
Cluster Data (1 map)

- Multiple image: Diego+14
- Optical Catalog: Diego+14, Coe+10
- Software: GLAFIC (Oguri 10)
 (e.g., Ishigaki+15)
Field Data (66 maps)

Examples

Detected Example

-5σ

FWHM of PB

0.6 x 0.8

Detection Example

* Original Target Sources Removed

Total Sources: 133

Intro Data/Analysis Number Counts Resolving CIB Galaxy Bias Counterpart Subaru

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
Data Analysis

Resolve CIB -> Derive **Number Counts**

\[N_{\text{eff}} = \frac{1 - R_s(S/N)}{C(S/N)} \]

- **\(N_{\text{eff}} \): Effective Number**
- **\(R_s(S/N) \): Spurious Source Rate**
- **\(C(S/N) \): Completeness**

Positive & Negative Peaks

- Deep (A)

Completeness

- ID6 (A)
- ID61 (B)
- ID67 (C)

Survey Area

(e.g., Hatsukade+13, Ono+14, Carniani+15)

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
We successfully derive number counts in the range of 0.018 - 1.2 mJy.
Resolve the CIB

- Almost fully (104±30%) resolve the CIB
- < 0.02 mJy sources would be negligible

-> 1) Flattening
 2) Truncation below 0.02 mJy

What are the faint ALMA sources?

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
1. **Statistical Approach: Cluster Analysis**

Examples

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>3</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Field-to-Field Scatter

\[Field-to-Field Scatter = Galaxy Bias + Poisson error \]

Counts-in-Cells

\[
\frac{b_g^2}{2} \approx \frac{\sigma_N^2 - \bar{N}}{\bar{N}^2 \sigma_V^2(z)}
\]

\(b_g \): galaxy bias \(\sigma_V \): matter variance
\(\sigma_N \): dispersion of source counts
\(N \): mean source counts

Faint ALMA Sources

\(b_g < 3.5 \)
\((\Lambda CDM->) M_{DH} < 5 \times 10^{12} M_{\odot} \)

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
1. Statistical Approach: Cluster Analysis

- Faint ALMA Sources
 \(b_g < 3.5 \)

- SMGs / DRGs / pBzK
 \(b_g \sim 5 - 7 \)

- sBzK / LBGs / LAEs
 \(b_g \sim 2 - 3 \)

Faint ALMA Sources = sBzK, LBGs, LAEs?
2. **Individual**: Opt.-NIR Counterparts

- Multi-wavelength data (X-ray, Optical, IR, radio)
- Opt.-NIR Counterparts

\[\sim 60 \pm 20\% \]

Source Flux vs Count. fraction

Faint ALMA Sources (red contour) w/o opt. counterparts (B,r,z)
Photometric Properties

BzK Color Diagram

- $z \sim 2$
- $z \sim 3-5$

BX/BM Color Diagram

- $z \sim 3-5$
- $z \sim 2$

Majority of Faint ALMA Sources

\rightarrow sBzK / LBG(BX/BM)
Photometric Properties

1. Clustering (Statistical)

Faint ALMA Sources

\rightarrow x AGN
\[\circ \text{Optically selected SFG} \]

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
Subaru NIR Spectroscopy

- Five faint ALMA sources
- To determine redshift, Z

Date: 6/19-6/21/2016
Mode: MORICS/HK500

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
Subaru NIR Spectroscopy

Other 3 faint ALMA sources …
• No lines are detected

z=2.50
12+log(O/H) ≤ 8.2

z=2.63
(Jullo+10)
12+log(O/H) ≤ 8.2

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima
Summary

Largest ALMA Dataset (133 down to 0.02 mJy)

- Resolve the CIB ~100%
- Statistical / Individual
 - galaxy bias: $b_g < 3.5$
 - Opt.-NIR counterparts:
 - (60%) Opt. SF galaxies $z \sim 2-3$
 - (40%) unknown

Seiji Fujimoto 11/28-12/2/2016 “Panoramas of the Evolving Cosmos” @ Hiroshima