

The KiDS-450 weak-lensing power spectrum, neutrinos, and baryons

Fabian Köhlinger (Kavli IPMU)

Collaborators: M. Viola, B. Joachimi, E. van Uitert, H. Hoekstra, K. Kuijken & the KiDS collaboration

The 6th Subaru International Conference, Hiroshima

1st December 2016

I. Introduction

Cosmological model:

II. Cosmic Shear

A370 NASA/ESA

Lensing statistic:

shear-shear (i.e. cosmic shear)

Lensing of LSS:

Theory:

"geometry"

measurements: correlation functions <>>> power spectra

Goal:

measure **weak-lensing power spectrum** of cosmic shear:

- include low multipoles (large scales)
- in redshift bins

Why?

- better handling of scale mixing in multipole space (compared to real space analyses)
- covariances
- account for scale dependent features:

Neutrinos, baryon feedback (e.g. Harnois-Déraps+ 2015)!

• independent analysis pipeline

Baryons & neutrinos:

Comparing QE to CF:

$$W(\ell) \times C_{\mu\nu}^{\rm EE}(\ell)$$

multipole range:

76 - 2300

k-modes (@z_{med} ~ 0.4):

0.05 Mpc⁻¹ – 1.50 Mpc⁻¹

The KiDS-450 data:

Results: Multipole Space

- quadratic estimator (QE) method (Hu & White 2001)
- expanded to include redshift bins (FK+ 2016)
- WL power spectra from KiDS-450 (subpatches combined with effective area weights)
- errors based on analytical covariance (Joachimi+ in prep.)

Results: Multipole Space

- quadratic estimator (QE) method (Hu & White 2001)
- expanded to include redshift bins (FK+ 2016)
- WL power spectra from KiDS-450 (subpatches combined with effective area weights)
- errors based on analytical covariance (Joachimi+ in prep.)

FK+ (in prep.)

III. Conclusions

• A direct extraction of the lensing power spectrum is a "cleaner" way to compare data with theory.

 Probably an imperfect noise-removal causes a bias which can be mitigated at the cost of weaker constraints.
→ more work required and ongoing

 Power spectrum results show consistency with correlationfunction analysis (derived with independent analysis pipeline).