
The Power of Combining 
Cosmological Probes 

Elisabeth Krause
and the DES Theory &Combined Probes Working Group 



Photometric Cosmology Surveys

17



The Power of Combining Probes

Best constraints obtained by combining 
cosmological probes

independent probes: multiply likelihoods

Combining large-scale structure probes (from 
same survey) requires more advanced strategies

clustering, clusters and WL probe same 
underlying density field, are correlated

correlated systematic effects

requires joint analysis
Olivier Doré AAS, WFIRST Science, Kissimmee, January 5th 2016

The Observational Foundations of Dark Energy

• Weak-Lensing not presented is also complementary.
2

SNe luminosity !
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Joint Analysis Ingredients

Likelihood Function Model Data Vector

Joint Covariance

number counts: Poisson

2PCF: ~ Gaussian (?)

improvements needed for 
stage IV surveys

consistent modeling of all observables

including all cosmology + nuisance parameters
 

large and complicated,
non-(block) diagonal matrix
use template + regularization

External Data
Simulations

Science Case
parameters of interest 
which science?

large data vector 
which probes + scales?

Priors

Nuisance Parameters

systematic effects 

parameterize + prioritize!
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Cosmology Priors



Introducing CosmoLike

Likelihood analysis library for combined probes analyses

Observables from three object types, and their cross-correlations

galaxies (positions), clusters (positions, N200), sources (shapes, positions)
 galaxy clustering, cluster abundance + cluster lensing (mass self-calibration), 
galaxy-galaxy lensing, cosmic shear, CMB cross-correlations 

separate n(z) + specific nuisance parameters for each object type

Consistent modeling across probes, including systematic effects

Computes non-Gaussian (cross-)covariances

halo model + regularization from O(25) simulated realizations

Optimized for high-dimensional likelihood analyses 

Improvements by trial and error on DES → lessons for LSST 

EK+Eifler 2016



CosmoLike Data Vector
cosmological
parameters

halo.c

cosmo3d.c
growth factor

D(k,z)

Plin(k,z)

distances Pnl(k,z)

Coyote U.
Emulator

collapse density
𝛿c(z) peak height

𝜈 (M,z)

halo properties
                                 

HOD, bias model

N(Mobs;zi)

CXY(l;zi,zj)

scaling relation
Mobs(M)

cluster
selection fuction

c(M,z) b(M,z) n(M,z)

z-distr.
n(z)

clusters.c

photo-z
model

redshift.c

projection 
functions

Limber 
approx.

cosmo2d.c

transfer function
T(k,z)



CosmoLike Data Vector
cosmological
parameters
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non-linear regime

galaxy formationcluster finding
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non-Gaussian 
photo-zs

shear calibration
...  ....  ....



Combined Probes Systematics

“Precision cosmology”: excellent statistics - systematics limited

 (and man-power limited!)

Easy to come up with large list of systematics + nuisance parameters

galaxies: LF, bias (e.g., 5 HOD parameters + b2 per z-bin,type)

cluster mass-observable relation: mean relation + scatter parameters

shear calibration, photo-z uncertainties, intrinsic alignments,...

� Σ(poll among DES working groups) ~ 500-1000 parameters

Self-calibration + marginalization

can be costly (computationally, constraining power)



Work Plan for Known Systematics

What’s the dominant known systematic? 

No one-fits-all answer, need to be more specific!

Specify data vector (probes + scales)

Identify + model systematic effects

find suitable parameterization(s)

need to be consistent across probes

Constrain parameterization + priors on nuisance parameters

independent observations

other observables from same data set

split data set



The Trouble with Systematics

a systematics free survey....

bias free parameter estimates with statistical uncertainty



The Trouble with Systematics

ignored systematic effect in analysis:

parameter bias



The Trouble with Systematics

marginalize systematic effect, correct parameterization

remove parameter bias, increase uncertainty



The Trouble with Systematics

marginalize systematic effect, correct parameterization

remove parameter bias, increase uncertainty

improve priors on

 nuisance parameters



The Trouble with Systematics

marginalize systematic effect, imperfect parameterization

residual parameter bias, increased uncertainty



Joint Analysis Work Plan: Step I

Precision Consistency Accuracy

Theory Simulations

Forecasts Impact

Parameter Constraints 

Likelihood 
Analysis

 Model, Priors

Refine Systematics Model



Galaxies are not simple point-like tracer particles

how much do we need to understand for accurate cosmology? 

photometric redshifts

galaxy bias 

tidal fields -> galaxy orientations

…

accuracy better for some types of galaxies than for others
how many galaxies do we need (to understand) for cosmology?

worked examples on next slides

Fundamental Physics from 
Galaxy Surveys
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redMaGiC, no sys
redMaGiC, all sys
σz <0.04, no sys
σz <0.04, all sys

galaxy sample with smaller ng,
better systematics control

σz <0.04 sample ~20 x more abundant than redMaGiC

DES Y5 clustering, g-g lensing + shear forecasts
marginalized over galaxy bias, shear calibration, 

baryons, Gaussian lens+source photo-zs

see Rozo+15 for redMaGiC details

DES Forecasts: Photo-zs vs. Shot Noise



Cut-off for Galaxy Bias 
Models?

LSST,  WL + clustering 
WL to l < 5000
clustering: vary cut-off scales
develop perturbative biasing up to 
k ~ 0.6 h/Mpc - with well-
constrained new parameters
understand non-linear regime

details: EK & Eifler ’16



Joint Analysis Work Plan

Precision Consistency Accuracy

TheoryObservations Simulations

Single Probe
 Analyses

Forecasts to Prioritize 
Systematics

Parameter Constraints 

Likelihood 
Analysis

Data, Model, Priors



multi-probe analysis, pass 1 - now what?


Unknown Systematics? vs. New Physics?



Unknown Systematics? vs. New Physics?

scale dependence?

dependence on galaxy selection?

calibrate with more accurate measurements
spectroscopic redshifts

galaxy shapes from space-based imaging

[potentially expensive]



Unknown Systematics? vs. New Physics?

scale dependence?

dependence on galaxy selection?

calibrate with more accurate measurements
spectroscopic redshifts

galaxy shapes from space-based imaging

[potentially expensive]

 correlate with different surveys
predict cross-correlations based on LSST analysis

constrain uncorrelated systematics 

e.g., cross-correlation with CMB-S4 lensing

invent optimized estimators

[fun, but not a general solution]
LSST WL x CMB-S4 lensing

calibrate shear calibration bias
Schaan, EK,+ 2016
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FIG. 5. Left panel: 68% confidence constraints on the shear biases mi for LSST, when self-calibrating them with cosmic
shear alone (blue), LSST alone (green), combination 1 (orange), combination 2 (yellow) and the full LSST & CMB S4 lensing
(red). The self-calibration works down to the level of LSST requirements (dashed lines) for the highest redshift bins, where
shear calibration is otherwise most dificult. We stress that all the solid lines correspond to self-calibration from the data alone,
without relying on image simulations. Calibration from image simulations is expected to meet the LSSt requirements, and
CMB lensing will thus provide a valuable consistency check for building confidence in the results from LSST.
Right panel: impact of unaccounted intrinsic alignments. The lines show the bias in the self-calibrated value of mi, and
the colored bands show the 68% confidence constraints, corresponding to the curves in the left panel. Intrinsic alignment
contribution to the shear calibration is present, but still within the 68% confidence region.

VI. SENSITIVITY TO PHOTOMETRIC REDSHIFT UNCERTAINTIES

In Sec. IV, we showed that CMB S4 lensing can calibrate the shear from LSST, assuming that the photometric
redshift uncertainties are under control. In this section, we ask whether this assumption was crucial or not. We
therefore vary the priors on source and lens photo-z uncertainties and re-run our forecast. Fig. 8 shows that the
shear calibration is mildly dependent on the source photo-z uncertainties (left panel), and very insensitive to the lens
photo-z uncertainties (right panel). However, we have not taken into account photo-z catastrophic failures in this
analysis.

VII. APPLICATION TO SPACE-BASED LENSING SURVEYS: EUCLID AND WFIRST

In this section, we reproduce our main forecast on shear calibration in the cases of Euclid and WFIRST. Our
assumptions and results are summarized in Fig. 9 and 10. CMB lensing from S4 can calibrate the shear for the 5
Euclid source bins down to 0.4% � 1.4%, and for the 10 WFIRST source bins down to 0.6% � 3.2%. These results
are clearly very encouraging.

VIII. CONCLUSION

[Eli: Comment on possible degeneracies between shear calibration and more realistic photo-z uncertainties.]
Weak gravitational lensing of galaxy images is a potentially powerful probe of the geometry and growth history

of the universe, and therefore of the properties of dark energy, the neutrino masses and possible modifications to
general relativity. Realizing the full potential of upcoming weak lensing surveys requires an exquisite understanding
of systematics e↵ects, such as photometric redshift uncertainties, intrinsic alignments, theoretical uncertainties related
to non-linear growth and baryonic e↵ects, and shear multiplicative bias. Because these systematic uncertainties are
so challenging, alternative methods to calibrate are valuable: they provide redundancy and contribute to building
trust in the results. In this paper, we focused on calibrating the shear multiplicative bias from LSST by using CMB



multi-probe analysis, pass 1 - now what?

would comparison with Planck results change this plan?

Planck best fit

Unknown Systematics? vs. New Physics?



Experimenter Bias?

nuisance parameters will outnumber cosmological parameters by far

what models + priors to adapt? when is the analysis done?

don’t use (implicit) w = -1 prior to constrain galaxy properties

a warning from particle physics
Credit: A. Roodman, R. Kessler, 

Particle Data Group



Why Blind Analyses?

Experimenter’s bias

choice of data samples + selections

choice of priors + evaluation of systematics

decision to stop work + publish

Blind Analysis: Method to prevent experimenter’s bias

hide the answer

must be customize for measurement



Two-stage process

measurement (correlation & mass functions)
shear catalog blinded, cluster calibration under debate                               

transform correlation functions (Muir, Elsner + in prep.)

still defining null-test, ‘allowed’ plots for sample selection

parameter estimation

off-set all parameter results by (constant) random numbers
needed: decisions on models to run, model selection criteria

Blind Analysis Strategy for DES-Y3 

ŵ(✓) ! ŵ(✓) +
@w

@⌦m
�⌦m



Joint Analysis Work Plan

Precision Consistency Accuracy

TheoryObservations Simulations

Combined Probes
Analysis

Single Probe
 Analyses

Forecasts to Prioritize 
Systematics

Parameter Constraints 

BlindingLikelihood 
Analysis

Data, Model, Priors



DES Multi-Probe Analyses

Kwan+16: Clustering + Galaxy-Galaxy Lensing (DES-SV, 140  sqdeg)
6 Kwan, Sánchez et al.
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Figure 4. Constraints on ⌦
m

and �
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using DES-SV Cosmic Shear
(dashed purple), DES-SV w(✓) ⇥ �

t

(✓) (this work, filled blue) and
Planck 2015 using a combination of temperature and polarization data
(TT+lowP, filled red). In each case, a flat ⇤CDM model is used.
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Figure 5. Constraints on ⌦
m

and �
8

assuming a wCDM model using
DES-SV Cosmic Shear (dashed purple), DES-SV w(✓) ⇥ �

t

(✓) (this
work, blue) and Planck 2015 using temperature and polarization data
(TT+lowP, red).

Parameter Prior range

⌦
m

0.1 – 0.8 Normalized matter density
⌦

b

0.04 – 0.05 Normalized baryon density
�
8

0.4 – 1.2 Amplitude of clustering (8 h�1Mpc top hat)
n
s

0.85 – 1.05 Power spectrum tilt
w -5 – -0.33 Equation of state parameter
h 0.5 – 1.0 Hubble parameter (H

0

= 100h)
⌧ 0.04 – 0.12 Optical depth

b
1

1.0 – 2.2 Linear galaxy bias
b
2

-1.5 – 1.5 Next order bias parameter
�
i

-0.3 – 0.3 Shift in photo-z distribution (per source bin)
m

i

-0.2 – 0.2 Shear multiplicative bias (per source bin)
m

IA

-0.3 – 0.35 Intrinsic alignment amplitude (low-z source bin only)
↵ -5 – -1 Additive constant w(✓) ! w(✓) + 10↵

Table 1. Parameters and their corresponding priors used in this work. Not all parameters are allowed to vary in every analysis. Nuisance
parameters are contained in the lower half of the table. When choosing a prior range on cosmological parameters, we allowed a su�ciently
wide range to contain all of the 2-� posterior on ⌦

m

, �
8

, n
s

, w and h, with Planck priors on ⌦
b

, for which we have less sensitivity. For the
systematic parameters, our choice of prior range is informed from previous DES analyses that studied the e↵ect of shear calibration (Jarvis
et al. 2015), photo-z distributions (Bonnett et al. 2015), and intrinsic alignment contamination (Clampitt et al. 2016; The Dark Energy
Survey Collaboration 2015) on the SV catalogues. The prior on the bias parameters were taken from studies of the redMaGiC mock catalog
(see Section 5.1 for details). In addition to the prior range on the nuisance parameters for the shear calibration and photo-z bias, there is a
Gaussian prior centered around zero of width 0.5, as explained in the text.

4 FIDUCIAL COSMOLOGICAL CONSTRAINTS

In this section we present our fiducial DES-SV cosmological
constraints from a joint analysis of clustering and galaxy-
galaxy lensing. The data vector consists of w(✓) and the two
�
t

(✓) measurements for the 0.35 < z < 0.5 redMaGiC bin (see
Fig. 2), over angular scales of 17-100 arcminutes. We chose
this lens bin as our fiducial, as we estimate greater contamina-
tion from systematic errors, on both the clustering and lensing
side, for the 0.2 < z < 0.35 redMaGiC bin (see Section 5.5 and
Clampitt et al. (2016)). To compute the model we use CAMB
(Lewis et al. 2000; Howlett et al. 2012) and Halofit (Smith et al.
2003; Takahashi et al. 2012) for the linear and non-linear mat-
ter power spectra, respectively. Because the accuracy of Halofit
can be confirmed only to ⇠5% for certain ⇤CDM models, we
have checked that using the Cosmic Emulator, a more precise

modelling scheme for the nonlinear dark matter power spec-
trum (1% to k = 1 Mpc�1, Lawrence et al. 2010) would only
a↵ect our results at the level of ⇠5% down to 100. We use the
CosmoSIS package6 (Zuntz et al. 2015) as our analysis pipeline
and explore the joint posterior distribution of our cosmological
(and nuisance) parameters using the multi-nest MCMC algo-
rithm of Feroz et al (2009), with a tolerance parameter of 0.5
and an e�ciency parameter of 0.8. Our cosmological param-
eters and priors are summarized in Table 1 and described in
greater detail next in this section.

In the fiducial case, we have included two nuisance param-
eters per source bin (one for errors in the photo-z distribution
and one for biases in the shear calibration) and one nuisance

6

https://bitbucket.org/joezuntz/cosmosis

c� 0000 RAS, MNRAS 000, 1–18



DES Multi-Probe Analyses

Kwan+16: Clustering + Galaxy-Galaxy Lensing (DES-SV, 140  sqdeg)

Analysis of Y1 data (1000 sqdeg) ongoing

Forecasts based on Y1 n(z), marginalizing over ~60 systematics parameters



DES Multi-Probe Analyses

Kwan+16: Clustering + Galaxy-Galaxy Lensing (DES-SV, 140  sqdeg)

Analysis of Y1 data (1000 sqdeg) ongoing

two independent cosmology pipelines (CosmoLike, CosmoSIS)

validation on DES mock catalogs
Constraints 

11/21/2016 DES collaboration-wide phonecon  13 

Cosmological	
parameters	+	
galaxy	bias	+		
photo-z	bias	

Covariances 

•  Covariance comparison ongoing… (MPP) 

11/21/2016 DES collaboration-wide phonecon  10 

simulated + analytic covariance analysis of mock data (N. MacCrann)



Conclusions

Existence of cosmic acceleration requires new fundamental physics

We’re entering the ~decade of galaxy survey cosmology 

KiDS,DES, HSC, PFS  -> DESI, LSST, Euclid, WFIRST,…

Cosmological constraints soon to be systematics limited

understand astrophysics 

understand systematics

Combine observables + surveys to understand/calibrate systematics

Combine different surveys to robustly confirm/rule out ΛCDM

DES-Y1 results coming to arXiv this winter! 


