Dark Matter Halo and Stellar Properties of Extremely Low-Mass Galaxies at z~2 (Kusakabe+16 in prep)

29/11/2016 The 6th SUBARU International conference @Hiroshima

Haruka Kusakabe (The University of Tokyo) K. Shimasaku, K. Nakajima, R. Goto, M. Ouchi, T. Hashimoto, A. Konno Y. Ono, Y. Harikane and J. Silverman

Stellar masses & SFRs at z~2

Stellar masses & SFRs at z~2

emission lines (e.g., $Ly\alpha$) & Gravitational lensing survey

- problems individual: only bright gals, poor IRAC S/N stacked: only average properties
- $Ms<10^8M_{\odot}$: less than 30 galaxies have stellar population estimates with large uncertainties

Shivaei+16;Popping+15;Whitaker+14; Rodighiero+11; Daddi+07; Kusakabe+15; Vargas+14; Hagen+14; Stark+14; Atek+14

Dark matter halos at z~2

- problems (Guaita+10): small sample size (250) → large statistics error small survey area (0.3 deg²) → suffer from cosmic variance
- No study for galaxies with Ms <~ $10^8 M_{\odot}$

This study

Dark matter halo & stellar population properties of

- low mass (Ms~ $10^8 M_{\odot}$)
- extremely low-mass (Ms<10⁸M $_{\odot}$) galaxies at z~2
- ~2400 NB LAEs in ~1deg² NB <26.4mag(5σ)
- sub samples based on NB excess & magnitude
- dark matter halo masses: clustering analyses
- stellar properties: SED fitting

Samples

Fleld	Area (min^2)	NB mag lim $(5\sigma, mag)$	Number of samples	Clustering analyses	SED fitting
SXDS	~1260	25.7, 2" ap	603	~	~
COSMOS	~850	26.1, 2"ap	619	~	~
GOODS-S	~830	26.4, 2" ap	269	~	
GOODS-N	~910	26.1, 3" ap	950	~	
TOTAL	~1deg ²		~2440		

(Nakajima+12, 13, Kusakabe+15, Konno+16)

Sub-sample criteria

 Divided into three sub-samples based on NB excess implying EW(Lyα) = 9-17Å,17-35Å, >35Å

Sub-sample criteria

 Divided into four sub-samples based on NB magnitude: 26.15-25.9 mag, 25.9-25.5 mag, 25.5-25.0 mag, <25.0mag

Clustering Analysis

Dark matter halo mass of cumulative sub samples

- ACF observation: Landy & Szalay+93 (error: poisson)
- ACF model: β=0.8, fitting range=40"-1000"
 bias factor-halo mass: Tinker+10

Dark Matter Halo masses

- Iarge cosmic variance beyond statistics errors
- No significant dependence on L(Lya) limit
- No significant dependence on EW (NB excess)

Dark Matter Halo masses

average bias = 1.32±0.19 (2440 LAEs in 1 deg²)
 < bias=1.8±0.3 (G10; 250 LAEs in 0.3 deg²)

Stacked SED fit

- observational data: B, V, R, I, z, J, H, K, IRAC ch1, ch2
- derived params: SFR, Ms, age, E(B-V), fesc(ion)
- model: BC03 with nebular emission (lines & continuum, Ono+10) constant SFH Z=0.2Zsun SMC-like attenuation curve (Kusakabe+15)

Ms vs SFR

- Ms are distributed widely: ~10⁷-10⁹M_o
- average LAEs: ~10⁹M_o

Mh vs Ms

Average LAEs lie on B13 extrapolation

 Ms: 2 dex range Mh: maybe wide distribution HSC survey is useful for further study

Ms vs SFR

LAEs with larger EW have smaller stellar masses

- 2/3 LAEs: lie on the extrapolation of the SFMS
- 1/3 LAEs: SB galaxies with stellar mass of ~10⁷M_o
 ~200 candidates of extremely low-Ms galaxies
 >> less than 30 galaxies in the previous work

Extremely Low-Mass LAEs: physical properties

 EW(Lya)~80Å L(Lya)=1.7×10⁴² erg/s, β~-2 M_{UV}~-18.5mag

(stacked properties)

 Ms ~2.6×10⁷ Msun sSFR ~160 /Gyr Age ~7 Myr fesc of LyC <~30% L(Ha) ~6×10⁴¹ erg/s

(stacked SED fitting)

5"×5" cut out image of Subaru (NB, B, V)

 Mh ~10¹⁰-10¹¹M_☉ Baryon Conversion Efficiency =SFR/baryon accretion rate ~0.1-1 ≳ typical value 0.1 from B13's relation

Extremely Low-Mass Galaxies: number density

~10-100 times smaller than extrapolation of SMF
 →large number of Extremely Low-Mass Galaxies with
 undetectably low SFRs

Extremely Low-Mass Galaxies: universality of the strong starburst

- galaxies form stars along SFMS at Ms=10⁷ 10⁸M_{\odot} \rightarrow staying time between Ms=10⁷ and 10⁸M_{\odot} \sim 300 Myr
- age/staying time ~ 10/300~1/30
 n(Ms=10⁷-10⁸M_☉)=6×10⁻⁴×30~ 2×10⁻² /Mpc³/dex
 → comparable to extrapolation of observed SMF at z~2

Extremely Low-Mass Galaxies: universality of the strong starburst

- galaxies form stars along SFMS at Ms=10⁷ 10⁸M_{\odot} \rightarrow staying time between Ms=10⁷ and 10⁸M_{\odot} \sim 300 Myr
- age/staying time ~ 10/300~1/30
 n(Ms=10⁷-10⁸M_☉)=6×10⁻⁴×30~ 2×10⁻² /Mpc³/dex
 → comparable to extrapolation of observed SMF at z~2
- majority of Ms~10⁷-10⁸M_o galaxies may experience the strong SB and may acquire significant fraction of mass from a strong SB
- > more robust discussion will be obtained by HSC survey!

Extremely Low-Mass Galaxies: mechanism of short time burst

- Short time scale of the strong SB:
 - young age < 10 Myr
 - small number density
- a) SN FB terminates the strong SB shortly \rightarrow SB phase before onset of SN FB?
- b) no sufficient gas supply? not inconsistent with a relatively high BCE (=SFR/baryon accretion rate)

FIRE simulation (Muratov+15)

~2440 LAEs at z~2 from 1deg² field

- average bias parameter = 1.32 ± 0.19 Mh ~ 10^{10} - 10^{11} M_o
 - large cosmic variance
 - smaller than Guaita+10 based on 0.3 deg² area
- stellar masses are distributed over ~10⁷-10⁹M_☉ large EW(Lya) objects have smaller stellar masses
- ~2/3 form star moderately lying on SFMS
 ~1/3 have extremely low stellar mass (Ms~10⁷-10⁸M_o) with strong star burst
- Extremely low-mass LAEs:
 - ~200 objects! >> 30 (previous work)
 - high sSFR, young age, high BCE \rightarrow short burst time scale

HSC enables us to study Mh variation of LAEs and physical properties of extremely low-mass galaxies