Modelling the spectral energy distributions of galaxies at cosmic noon

Elisabete da Cunha

ARC Future Fellow • Australian National University

Australian Government Australian Research Council

Australian National University

Spectral models: an essential tool for galaxy evolution

spectral energy distribution of a star-forming galaxy

Spectral models: an essential tool for galaxy evolution

Main ingredients for high-z galaxy SEDs

Emission by stellar populations

Evolution of stellar populations of different ages & metallicities Star formation histories

The interstellar medium: dust & ionized gas

Dust attenuation, self-consistent infrared emission Nebular emission & impact on spectral energy distributions

Active galactic nuclei

Correct for contamination in the mid-IR (and other wavelengths)

Generation 'Cosmological effects'

UV absorption by the IGM Effect of the CMB in (sub-)mm observations

Statistical constraints on physical parameters

Fitting SEDs using a Bayesian approach

Main ingredients for high-z galaxy SEDs

Emission by stellar populations

Evolution of stellar populations of different acce & motallicities

Star formation histories

The interstellar mediu
Dust attenuation, self-c
Nebular emission & imp

- Active galactic nuclei
 Correct for contaminati
- Cosmological effects UV absorption by the IC Effect of the CMB in (su

Statistical constraints
Fitting SEDs using a Ba

emission by stellar populations

Stellar evolution prescription

HR evolutionary tracks for stars of different initial masses & metallicities.

computed using evolutionary tracks by Marigo et al. (2008)

Stellar evolution prescription

HR evolutionary tracks for stars of different initial masses & metallicities.

Spectral libraries

assign spectrum to a star of given mass, age and metallicity.

Stellar evolution prescription

HR evolutionary tracks for stars of different initial masses & metallicities.

Spectral libraries

assign spectrum to a star of given mass, age and metallicity.

Initial Mass Function

how many stars of each mass form in each generation.

Conroy (2013)

spectrum of a SSP at a given age

IMF-weighted sum of the spectra of stars along the isochrone at that age

Impact of rotation & binaries on ionizing radiation

(adapted from Wofford+2016)

TP-AGB stars: a closer look

Can be important for stellar populations with ages 0.5 to 1.5 Gyr

 $^{\rm Q}$ Maraston (2005) models predicted NIR fluxes up to 3x higher than BC03 models, and also sharp absorption features at 1.1 - 1.8 μm

Systematic differences in M/L from 0.2 to 0.4 dex

Zibetti+2012:

ISAAC spectroscopic follow-up of a sample of z~0.2 post-starburst galaxies (where contribution by TP-AGB stars should be maximal)

TP-AGB stars: a closer look

spectrum of a SSP at a given age

IMF-weighted sum of the spectra of stars along the isochrone at that age

Galaxy = many stellar populations

Spectrum of all the stars in a galaxy i.e. 'composite stellar population' = $\int SSP(age,metallicity) \times SFR(t)$

Galaxy = many stellar populations

Spectrum of all the stars in a galaxy i.e. 'composite stellar population' = $\int SSP(age,metallicity) \times SFR(t)$

Main parameters:

€ IMF

- star formation history

♀ metallicity (evolution)

Star formation & chemical enrichment histories

Post-processing of the Millenium simulation by De Lucia & Blaizot (2007)

Star formation & chemical enrichment histories

Post-processing of the Millenium simulation by De Lucia & Blaizot (2007)

Looks nothing like a continuous tau-model!

Need to include increasing SFHs for of high-redshift galaxies.

e.g. Maraston+2010, Lee+2010, Wuyts+2011, Pforr+2012, Behroozi+2013, Pacifici+2013

Points: 1048 (down to H=23) 3D-HST galaxies in GOODS-South

(Pacifici, da Cunha, Charlot,+2015)

Points: 1048 (down to H=23) 3D-HST galaxies in GOODS-South

We need complex (realistic) SFHs to reproduce the observed HST colours of galaxies!

(Pacifici, da Cunha, Charlot,+2015)

the interstellar medium: transfer through dust & gas

Interstellar dust

Typically interstellar dust is ~1% of the mass of a galaxy, but dust grains scatter and absorb a large fraction (typically 50%) of the UV/optical light emitted by stars.

$$L_{\lambda}^{\text{out}} = L_{\lambda}^{\text{in}} \exp(-\tau_{\lambda})$$

Dust attenuation optical depth: depends on physical properties of the dust grains & stars/dust geometry

(after Calzetti 2012)

The interstellar medium: dust

 \bigcirc Stellar **birth clouds** with lifetime t₀.

 \bigcirc Attenuation affecting stars older than t₀ in the **diffuse ISM** is only a fraction of that affecting young stars in the birth clouds.

The interstellar medium: dust

 \bigcirc Stellar **birth clouds** with lifetime t₀.

 \bigcirc Attenuation affecting stars older than t₀ in the **diffuse ISM** is only a fraction of that affecting young stars in the birth clouds.

The interstellar medium: dust

Stellar **birth clouds** with lifetime t_0 .

Charlot & Fall (2000)

*

2

Dust evolution at high redshift?

330 Lyman-break galaxies at z~2-10; $\beta < -1.75 < \beta < -1.25$ From extrapolating local IRX- β relation (assuming Td=35 K), expected **35** detections with ALMA; found **6** detections.

z = 2 - 3

z = 2 - 3

 $\beta > -1.25$

The interstellar medium: ionized gas

Stellar **birth clouds** with lifetime t_0 .

 \bigcirc Attenuation affecting stars older than t₀ in the **diffuse ISM** is only a fraction of that affecting young stars in the birth clouds.

The interstellar medium: ionized gas

Stellar **birth clouds** with lifetime t_0 .

 \bigcirc Attenuation affecting stars older than t₀ in the **diffuse ISM** is only a fraction of that affecting young stars in the birth clouds.

Charlot & Fall (2000)

281

*

*

*

á HII

ISM

2

*

×.

contamination by nebular emission can be important even at 'moderate' redshifts!

Pacifici, da Cunha+2015; also e.g. de Barros+2014

realistic SAM SFHs nebular emission

constraining the physical properties from observed SEDs

SED fitting: Bayesian Method

Kauffmann+2003, Gallazzi+2005, Salim+2007, MAGPHYS (da Cunha+2008) MCMC: e.g. BEAGLE (Chevallard & Charlot 2016), Prospector (Leja+2016)

Testing MAGPHYS with hydro+RT simulations

green: "true value"

colours/shade: MAGPHYS, different viewing angles

MAGPHYS recovers the physical parameters well for different viewing angles with smooth time

step variation.

Hayward & Smith 2015

Ongoing upgrade: modelling the AGN contribution

Ongoing upgrade: modelling the AGN contribution

energy balance + excess mid-IR help constrain the AGN contamination

© corrected stellar mass, SFR

da Cunha, Juneau+, in prep.

A challenge: measuring the properties of dusty star-forming galaxies (ALESS SMGs)

Degeneracies in optical SEDs: dusty galaxies

effect on the broad-band SEDs

Degeneracies in optical SEDs: dusty galaxies

Hainline+2010 see also Michalowski+2014

Example SED fit: ALESS009.1

da Cunha + 2015

ALESS009.1: parameter likelihood distributions

ALESS009.1: parameter likelihood distributions

ALESS009.1: parameter likelihood distributions

Stacked likelihood distributions

redshift distribution consistent with previous estimates

optically-faint SMGs tend to have higher redshifts and dust attenuation

Stacked likelihood distributions

Are the ALESS SMGs on the 'main sequence'?

... are they extreme starbursts or just the high-mass end of the main sequence of star formation?

Are the ALESS SMGs on the 'main sequence'?

... are they extreme starbursts or just the high-mass end of the main sequence of star formation?

49% significantly above the main sequence.

27% significantly above the main sequence.

Our results suggest that SMGs may not be a uniform galaxy population (as suggested by e.g. Hayward+2011,2012).

The effect of the CMB in (sub-)mm high-z observations

Effect of the CMB in (sub-)mm observations

Effect of the CMB on continuum dust emission

1. Extra heating by the CMB

da Cunha+2013

Effect of the CMB on continuum dust emission

1. Extra heating by the CMB

da Cunha+2013

10

Effect of the CMB on CO line emission

(see also e.g. Combes+1999, Papadopoulos+2000, Obreschkow+2009)

- Extra heating by the CMB: increase in excitation temperature of the gas
- Fraction of intrinsic flux of each line that is observed against the CMB:

$$\frac{S_{\nu/(1+z)}^{J}[\text{obs. against CMB}]}{S_{\nu/(1+z)}^{J}[\text{intrinsic}]} = 1 - \frac{B_{\nu}[T_{\text{CMB}}(z)]}{B_{\nu}[T_{\text{exc}}^{J}]}$$

Spectral models for cosmic noon & beyond

Evolution of young stellar populations

Rotation & multiplicity affect the UV emission of low metallicity massive stars TP-AGB stars - not as near-IR bright as previously thought

Star formation histories

We need to do better than tau-models at high redshift

Nebular emission

Include self-consistently in the SEDs (photo-ionization models) Important to interpret spectra & contamination of broad-band photometry

Dust attenuation & dust infrared emission

Model dust attenuation and emission self-consistently Dust evolution at high redshift? Need flexible prescriptions.

Modern fitting techniques

Bayesian fitting to account for degeneracies, marginalise over nuisance parameters, explore parameter space, etc.