The 6th Subaru International Conference in Hiroshima (28/11/2016)

Lya Luminosity Functions at z=5.7 & 6.6 by Subaru/HSC 21deg² NB surveys

Akira Konno (Univ. of Tokyo)

M. Ouchi, T. Shibuya, R. Higuchi (Univ. of Tokyo) and HSC-SSP project 84 & 85 members

• Identification of interesting objects (see T. Shibuya+'s talk)

- Identification of interesting objects (see T. Shibuya+'s talk)
- Large uncertainties at bright ends of Lya LFs

- Identification of interesting objects (see T. Shibuya+'
- Large uncertainties at bright ends of Lya LFs
- Lya LF evolution at z>6 to constrain reion zation histo
 - Lya damping wing absorption by IGM HI gas

- Identification of interesting objects (see T. Shibuya+
- Large uncertainties at bright ends of Lya LFs
- Lya LF evolution at z>6 to constrain reion zation histo
 Lya damping wing absorption by IGM HI gas
- Wide area surveys to construct large z>6/LAE sample

Subaru/HSC NB Surveys

- HSC-SSP 5-years survey (for z=5.7 & 6.6 LAEs)
 - Deep & Ultra-Deep NB816/921 imaging
 - Area … Deep: ~30 deg², UltraDeep: ~4 deg²
 - Exp. Time ... Deep: ~4 hrs, UltraDeep: ~12 hrs

Present Status of HSC-NB Data

- Available data observed in Mar. 2014 Apr. 2016
 - Area ... 13.8 deg² (NB816) & 21.2 deg² (NB921)
 - Limit. mag ... ~25.0 mag (Deep), ~25.5 mag (UltraDeep)
- x2-10 (z=5.7), x4-20 (z=6.7) wider than Ouchi+, Santos+, Matthee+

LAE Selection

	NB921	NB816
UD_COSMOS	435	202
UD_SXDS	60	224
D_COSMOS	249	
D_DEEP23	178	423
D_ELAIS-N1	351	232
Total	1273	1081

- NB color selection criterion to identify z=5.7/6.6 LAEs
- ~2400 LAEs (total) have been found so far
 x2-6 larger than Ouchi+, Santos+, Matthee+'s samples (Shibuya+ in prep.; see also T. Shibuya+'s talk)

Completeness & Contamination

- Completeness estimates with Synpipe (Huang, Murata+)
 - Input & detect artificial objects in HSC images
 - ~80% at NB < 24 mag, ~50% at 5 σ limit. mag.
- Contamination rate ... 31% by spec. obs. (Shibuya+'s talk)

Number Counts of LAEs

- Surface number densities of z=5.7, 6.6 LAEs
 Ouchi+08/+10 ... Obs. in SXDS w/ Suprime-Cam
- Consistent with previous Suprime-Cam results

Consistent with previous studies

- Consistent with previous studies
 - Best-fit (whole L(Lya) range)

- Consistent with previous studies
 - Best-fit (whole L(Lya) range)
 - Best-fit (log L(Lya) < 43.5)</p>

- Consistent with previous studies
 - Best-fit (whole L(Lya) range)] Eme
 - Best-fit (log L(Lya) < 43.5)

Emergence of bright-end hump

Consistent with previous studies

- Consistent with previous studies
 - Best-fit (whole L(Lya) range) No sign

No significant bright-end hump

- Significant bright-end hump can be seen at z=6.6
 ⇔ No hump in z=5.7 Lya LF
- Effects of large ionized bubbles around bright LAEs? or emergence of AGN at z=6.6?? (see R. Higuchi+'s poster)

• Lya LD obtained by HSC survey

• Lya LD obtained by HSC survey

Lya LD obtained by HSC survey
 – Large difference between Lya & UV LD evolution

- Lya LD obtained by HSC survey
 Large difference between Lya & UV LD evolution
- Related to Lya escape fraction (f_{esc}(Lya)) evolution (e.g., Hayes+11)

f_{esc}(Lya) Evolution z=0-8

f_{esc}(Lya) = (observed Lya LD) / (dust-corrected UV LD)

f_{esc}(Lya) Evolution z=0-8

- f_{esc}(Lya) = (observed Lya LD) / (dust-corrected UV LD)
- Different f_{esc}(Lya) evolution between at z=0-6 & at z>6
 Increase of f_{esc} (Lya) at z=0-6 by 2 orders of mag.

f_{esc}(Lya) Evolution z=0-6

- 4 possibilities to explain the f_{esc} evolution;
 - (1) Age, (2) outflow ... Not so large evolution at z=0-6
 - (3) Dust Extinction ... Cannot explain at z=0-4
 - (4) Resonance Scattering of ISM HI gas (w/ dust extinction)
 - Expanding shell model (MCLya; e.g., Verhamme+06)
 - Suggests ~1/100 decrease of N_{HI} from z=0 to 6
 - HI deficit & high ionization state (e.g., D. Stark's talk)

Cosmic Reionization History

- x(HI) = 0.1-0.4 at z=6.6 w/ simple theoretical model
 Consistent with previous studies
- Comparing x(HI) evolution w/ the latest *Planck* 2016 results
 x(HI) & T_{el} are consistent (e.g., Robertson+15, Bouwens+15)

Summary

 We conduct Subaru/HSC SSP survey, and obtain ~21deg² NB imaging data, so far.

 \rightarrow ~2400 LAEs at z=5.7 & 6.6 (the largest sample to date)

- We determine the Lya LFs at z=5.7 & 6.6, and find a bright-end hump in z=6.6 Lya LF, but no hump at z=5.7
 → Large ionized bubble around bright LAEs?
- We derive Lya LDs at z=0-8, and find the f_{esc}(Lya) increase at z=0-6, and f_{esc}(Lya) decrease at z>6.
 → Suggests N_{HI} evolution at z=0-6 by 2 orders of mag.
 → x(HI) = 0.1-0.4 at z=6.6, and confirm that x(HI) evolution are consistent with the latest *Planck* 2016 results.

Number Count (z=5.7, individual fields)

Number Count (z=6.6, individual fields)

Lya LF (z=5.7, individual fields)

Lya LF (z=6.6, individual fields)

