Panoramas of the Evolving Cosmos (Hiroshima; 2016/11/29)

Panoramic Mapping of Star Formation Activities across Environments since z~3

Taddy Kodama (NAOJ)

Masao Hayashi, Yusei Koyama, Ichi Tanaka, Yosuke Minowa (NAOJ), Ken-ichi Tadaki (MPE), Rhythm Shimakawa, Tomoko Suzuki, Moegi Yamamoto (NAOJ/Sokendai), Minju Lee (NAOJ/U.Tokyo), and Mahalo-Subaru, Ganba-Subaru, Gracias-ALMA teams

A galaxy cluster RXJ0152 at z=0.83 (Subaru/Suprime-Cam)

Outline

- MAHALO: Mapping star formation in clusters/fields at 0.4<z<3.6 with narrow-band imaging (Ha, [OII]) with Subaru
- MAHALO-DEEP: Towards lower masses (<10^{9.5}M_.)
- MAHALO-LYA: Environmental dependence of Lya emissivity from Ha emitters.
- MAHALO–FAR: Towards higher redshifts (3<z<3.6) with [OIII]
- MAHALO-SHARP: Towards higher spatial resolution
 GANBA-Subaru (<0.2") with AO imaging and ALMA
 GRACIAS-ALMA

Why 1<z<3? and Why Ha and [OIII]?

Rest-UV is NOT a good tracer of SF in this critical era \rightarrow Go for Ha and [OIII] at NIR!

- Redshifts are accurately known only with imaging (the same within a narrow slice).
- 3. Lower dust extinction compared to UV-selected SFGs such as LBGs.
- 4. Known redshifts/line fluxes deserve excellent targets for follow-up observations, such as NIR spectroscopy and ALMA line observations.

The most prominent star-bursting proto-cluster at z~2.5

USS1558-003 (z=2.53)

Ha imaging with MOIRCS/NB2315 FoV=4' x 7'

68 Ha emitters are detected. ~40 are spec. confirmed.

~20x denser than the general field. Mean separation between galaxies is ~150kpc in 3D.

Hayashi et al. (2012)

Spatial distribution of star-forming galaxies in clusters at z<1.5

 \Box H α emitters at z=0.81 (RXJ1716) \Box [OII] emitters at z=1.46 (XCS2215)

Clusters Grow (Quench) Inside-Out!

Spatial distributions of Ha emitters in proto-clusters at z>2

1. Lots of HAEs in proto-cluster cores unlike lower-z clusters (quenched center). Clusters grow (quench) inside-out!

2. Red HAEs (J-Ks >1.38; dusty starbursts) tend to favor dense cores/clumps.

Massive + dusty galaxies in proto-cluster cores at z~2

Red Ha emitters in PKS1138 are massive ($M \star > 10^{11} M_{\odot}$) and dusty star-forming galaxies. Many are detected at 24µm with MIPS, but not in X-ray.

 \rightarrow Cluster specific/preferred populations/phenomena at high-z, holding a key to understanding the environmental effects in forming clusters.

Red galaxies can be very active!

Evolution of integrated SFRs and growth of dynamical mass in cluster cores

Shimakawa et al. (2014)

MAHALO-DEEP : towards lower mass galaxies

USS1558-003 (z=2.53) and PKS1138-262 (z=2.16) proto-clusters

A half of them are located in the dense clumps, but the other half are in the outskirts. USS1558-003 proto-cluster (z=2.53) -0.42 1 Mpc (comoving HST/WFC3 -0.44 **F160W** Radio galaxy HAEs possible HAES -0.5 HAEs w/ high sSFR Ð -0.52 -0.54 FΤ MOIRCS/Subaru ___ WFC3/HST -0.56 240.28 240.36 240.4 R.A. [deg] Hayashi et al. (2016)

Dual emitter (Ly α +H α) survey in and around USS1558 (z=2.53)

Low Ly α escape fraction in HAEs in the dense clumps

Integrated Ly α escape fraction: $f_{esc (Ly\alpha)} = Flux_{obs.}(Ly\alpha) / Flux_{dust-corr.}(H\alpha \rightarrow Ly\alpha)$

Rich CGM/IGM (HI) in the dense clumps fed by cold mode accretion?

MAHALO-FAR : Towards higher-z SFGs with [OIII]

[OIII] emitters at z~3.4 versus Ha emitters at z~2.3 in SXDF-UDS-CANDELS

Suzuki et al. (2015)

Galaxies increase their M* and SFR by a large factor (2-10) in this 1Gyr interval!

MAHALO-SHARP: Towards higher spatial resolution

A clumpy, extended SFG (HAE) at z=2.53 from MAHALO Seeing-limited Hα image in red contour

H α tends to be stronger in the red clump, suggesting a dusty SB occurring there. \rightarrow The site of bulge formation with a dusty starburst?

Tadaki et al. (2013b)

Some extended HAEs are resolved with natural seeing, but for the majority, we require better resolutions with AO+NB imaging, IFU and ALMA.

GANBA-Subaru terrible weather :<

Struggling with

Galaxy Anatomy with Narrow-Band AO imaging with Subaru

AO-assisted narrow-band H α or [OIII] imaging with IRCS on Subaru

 $EW(H\alpha) \sim sSFR$

×

 $L(H\alpha) \sim SFR$

A Hα emitter at z~2.19 (NB2095 + AO188) in SXDF-CANDELS $(0.2" \sim 1.6 \text{ kpc})$

Being-truncated bulge + Off-center star-forming clump? Minowa et al., in prep.

GRACIAS-ALMA

Galaxy Resolved Anatomy with CO Interferometry And Submm observations with ALMA

Mapping/resolving molecular gas and dust contents of high-z SF galaxies at 1.5<z<2.5 across various environments

CO line @ Band-3 (~100GHz) SFR~ $50M_{\odot}$ /yr (~3hrs, 5 σ)

@1<z<3 Dust continuum@ Band-6-9 (450 μ m–1.1 mm) SFR~15M_o/yr (~1hr, 5 σ)

Spatial resolution: 0.1~0.2" (~1kpc)

		Mahalo-Subaru			1	Gracias-ALMA		ALMA status
target	z	line	$\mu \mathrm{m}$	NB-filter	Camera	Continuum	Line@GHz(band)	proposals results
2215 - 1738	1.46	[OII]	0.916	NB912	S-Cam	B7,9	CO(2-1)@94 (B3)	Hayashi done (CO/dus
0332 - 2742	1.61	[O11]	0.973	NB973	S-Cam	B7,9	CO(2-1)@89 (B3)	not yet
0218.3 - 0510	1.62	[O11]	0.977	NB973	S-Cam	B7,9	CO(2-1)@88 (B3)	not yet
1138 - 262	2.16	$H\alpha$	2.071	NB2071	MCS	B6,7,9	CO(3-2)@110 (B3)	Koyama-I done (CO)
4C23.56	2.48	$\mathrm{H}lpha$	2.286	NB2288	MCS	B6,7,9	CO(3-2)@99 (B3)	Suzuki done (CO/dust
1558 - 003	2.53	$\mathrm{H}lpha$	2.315	NB2315	MCS	B6,7,9	CO(3-2)@98 (B3)	Kodama- done (CO)
SXDF	2.19	$\mathrm{H}lpha$	2.094	NB2095	MCS	B6,7,9	CO(3-2)@108 (B3)	Tadaki- done
-CANDELS	2.53	$\mathrm{H}lpha$	2.315	NB2315	MCS	B6,7,9	CO(3-2)@98 (B3)	Tadaki+ (CO/dust)

f(gas) and SFE(=SFR/M_{gas}) are essential quantities to characterize the mode of SF. Spatially resolved maps of these quantities are also the keys to understand the physics.

ALMA observations (Band-3, 6) of 4C23.56 proto-cluster at z=2.48

7 detections with CO(3-2) line and 4 detections with dust continuum at 1.1mm from HAEs

ALMA observations of CO(3-2) and dust continuum of HAEs in 4C23.56 proto-cluster at z=2.48

Our ALMA sources (SFGs) are located on the SF main sequence (similar in sSFR). Lee et al., in prep.

Anti-correlation between f(gas) and SFE in the z~2.5 proto-cluster?? But WHY??

Bulge/clump scale (~1kpc) anatomy of high-z SFGs across various environments with Subaru-AO + HST + ALMA (higher resolution)

GANBA-Subaru

HST imaging

GRACIAS-ALMA

Summary

- MAHALO-Subaru has been mapping out SFGs in clusters and the general fields, and has revealed the inside-out quenching of galaxy clusters since z~2.5.
- MAHALO-LYA finds that LAEs are totally avoiding the dense clumps in the young proto-cluster at z=2.5 due probably to rich HI gas associated to the clumps fed by the cold-mode accretion.
- MAHALO-DEEP has revealed star-bursting galaxies with high-sSFR at the low mass end (< 10^{9.5}M_o) in z>2 protoclusters. Environmental effects?
- MAHALO-SHARP (GANBA-Subaru, GRACIAS-ALMA) are resolving internal structures of SFGs at z>2 and witnessing the physical processes of galaxy formation, depending also on environments. Anti-correlation between f(gas) and SFE is seen in a proto-cluster at z~2.5?