ISM excitation and metallicity of star-forming galaxies at $z \sim 3.3$ from near-IR spectroscopy

Masato Onodera (Subaru Telescope)

Marcella Carollo, Simon Lilly, Sandro Tacchella (ETH Zurich), Alvio Renzini (INAF-Padova), Nobuo Arimoto (Subaru Telescope), Peter Capak, Nick Scoville (Caltech), Emanuele Daddi (CEA/Saclay), Sumire Tatehora (GUAS), Gianni Zamorani (INAF-Bologna)

• Tight M-Z relation (MZR) at z=0, and evolution toward lower-Z to higher-z

• SFR appears to be a second parameter of MZR at z=0

• Z(M,SFR) is claimed to be z-independent to z~2 (FMR), but deviate at z>3 (?)

Tremonti+2004; Savaglio+2005; Erb+2006; Mannucci+2010
Issues in studying $Z(M,SFR)$ at high-z

Simple extrapolation of $Z(M,SFR)$ at $z=0$ to $z=2-3$ is dangerous.

Gas consumption timescale (τ_{gas}) and mass increase timescale ($rsSFR^{-1}$) become closer at higher redshift.

Maier+2014; Lilly+13
Evolving ISM conditions

Higher ionization parameters in higher redshift star-forming galaxies

Higher electron density (~10x) at z~2.3 than at z~0

Up to z~2.5, a large number of sample has started being obtained

Nakajima & Ouchi (2013); Sanders+2016
Questions to be addressed

What are the properties of ionized gas in normal star-forming galaxies at z>3 and their relations with galaxies’ global properties?

Does SFR play as a second parameter of MZR at z>3?

Is the dependence of MZR on SFR, if any, consistent with the locally defined z-independent FMR?

Does the simple gas regulator model for star formation and chemical evolution work at z>3?
Sample

Main-sequence star-forming galaxies at 3<z<3.7 with a median $z=3.3$

Primary sample: zCOSMOS-Deep with robust spectroscopic redshifts

Secondary sample: photo-z objects from the COSMOS photo-z catalog

Onodera+16
Data

H and K bands with Keck/MOSFIRE for **30-80 min** per band in total 3 out of 8.1 nights in January 2014 and 2015

43 out of 54 objects with detected emission line(s): resolved [OII]3727, [NeIII]3869, Hβ, [OIII]4959,5007

Onodera+16
Stack

Stacking w/ binning by M* and SFR (above/below MS)

Onodera+16
Measurements

Stellar mass: SED fitting on emission line removed photometry (BC03 library; exp. declining SFH; Chabrier IMF; Calzetti extinction law)

Star formation rate (SFR): extinction corrected rest-frame UV luminosity

$12+\log(O/H)$: R_{23}, $\text{[OIII]}/H\beta$, $\text{[OIII]}/\text{[OII]}$, $\text{[OII]}/H\beta$, and $\text{[NeIII]}/\text{[OIII]}$ (Maiolino+08)

Ionization parameter, q: $\text{[OIII]}/\text{[OII]}$ (Kobulnicky & Kewley 2004)

Electron density, n_e: $\text{[OII]}3726/\text{[OII]}3729$
Impact of emission lines on SED fitting

Strong emission lines affect the estimate of stellar populations

Older and more massive, if not included in the broadband SED fitting

We know exact amount of emission line fluxes

Schaerer & de Barros (2009)
Impact of emission lines on SED fitting

Larger changes in M_* and age with increasing emission line contribution

SFR and Av are less affected as they are mostly constrained by UV

Fraction of Hβ and [OIII] flux in K-band flux

Onodera+16
Ionization parameter

Onodera+16
Electron density

\[\log \text{Electron density (cm}^{-3} \text{)} \]

\[\Delta M_{\text{S}} \]

\[\log M_*/M_\odot \]

\[\log \text{SFR} \]

\[\log \text{sSFR} \]

\[12+\log(\text{O/H}) \]

\[\log q \]
Mass-metallicity relation

~0.7 dex lower metallicity than the z=0 relation, ~0.3 dex compare to the z=2 relation

Lilly+13 model w/ and w/o evolution in gas consumption timescale \(\tau_{\text{gas}} = \frac{1}{\varepsilon} = \frac{M_{\text{gas}}}{\text{SFR}} \)
can enclose the z\~3.3 MZR

No apparent dependence on SFR at a given stellar mass

Onodera+16
A majority of z~3.3 galaxies does **not follow** the FMR, but shows \(~0.3-0.5\) dex offset toward lower metallicity. But, no reduction of the scatter by the projection?
Less important role of SFR on MZR

No dependence on SFR in contrast to the local FMR or model predictions

No reduction of the scatter in any projections of $Z(M, SFR)$

This may be due to the small sample size and large errors in metallicity

Onodera+16
Redshift evolution of MZR

Strong evolution of SFE ε (inverse of τ_{gas}) fit well up to $z \sim 2$

At $z \sim 3$, a milder evolution of ε is preferred \(\text{(cf. } \varepsilon \propto (1+z)^{0.34} \text{ by Genzel+15; talk by Groves; Schinnerer+16)}\)

Nitrogen-related issues for N2 metallicities at $1 < z < 2$ studies? \(\text{(e.g., Yabe+15; Kashino+2016ab; Masters+2016)}\)
Summary

• We studied metallicity and ionization properties of normal star-forming galaxies and their relationship with stellar mass and SFR at z~3.3

• Emission line contribution has an important impact on SED fitting

• No correlation is found in either electron densities or ionization parameters with galaxies’ global properties

• The M-Z relation shows ~0.7 dex offset from the z=0 one, and ~0.3 dex even since z~2

• SFR does not appear to play a significant role in MZR at z~3.3

• The MZR at z~3.3 and redshift evolution of MZR can be explained by the Lilly+13 model with a mild evolution of gas consumption timescale toward high redshift