- T TIOBAGAS, _ 13- ZI59T

ASTRONOMY & ASTROPHYSICS
SUPPLEMENT SERIES
Astron. Astrophys. Suppl. Ser. 113, 159-166 (1995)

Binary table extension to FITS

W.D. Cotton', D. Tody? and W.D. Pence?

OCTOBER I 1995, PAGE 159

! National Radio Astronomy Observatory*, Charlottesville, 520 Edgemont Road, VA 22903-2475, U.S.A.
% National Optical Astronomy Observatory**, P.O. Box 26732, Tucson, AZ 85726-6732, U.S.A.
3 Laboratory for High Energy Astrophysics, Code 668, NASA /Goddard Space Flight Center, Greenbelt, MD 20771,

U.S.A.

Received February 14; accepted March 22, 1995

Abstract. — This paper describes the FITS binary tables which are a flexible and efficient means of transmitting
a wide variety of data structures. Table rows may be a mixture of a number of numerical, logical and character data
entries. In addition, each entry is allowed to be a single dimensioned array. Numeric data are kept in binary formats.
The definition of the binary tables contained in this paper has been approved by formal vote of the IAU FITS Working

Group, and is a part of the IAU FITS standards.

Key words: techniques: miscellaneous; image processing

1. Introduction

The Flexible Image Transport System (FITS), Wells et
al. (1981) and Greisen & Harten (1981), has been used for
a number of years both as a means of transporting data
between computers and/or data processing systems and
as an archival format for a variety of astronomical data.
The success of this system has resulted in the introduc-
tion of enhancements. In particular, considerable use has
been made of the records following the primary data “file”.
Grosbgl et al. (1988) introduced a generalized header for-
mat for extension “files” following the primary data “file”,
but in the same physical file. Harten et al. (1988) defined
an ASCII table structure which could convey information
that could be conveniently printed as a table. This paper
generalizes the ASCII tables and defines an efficient means
for conveying a wide variety of data structures as exten-
sion “files”. The definition of the binary tables contained
in this paper (excluding the appendices) was adopted as
an official FITS standard in June 1994 by a formal vote
of the International Astronomical Union’s FITS Working
Group.

*The National Radio Astronomy Observatory (NRAO) is oper-
ated by Associated Universities Inc., under cooperative agree-
ment with the National Science Foundation

**The National Optical Astronomy Observatories are operated
by the Association of Universities for Research in Astronomy,
Inc. (AURA) under cooperative agreement with the National
Science Foundation

2. Binary tables

The binary tables are tables in the sense that they are
organized into rows and columns. An entry, or set of val-
ues associated with a given row and column, can be an
array of arbitrary size. These values are represented in a
standardized binary form. Each row in the table contains
an entry for each column. This entry may be one of a
number of different data types, bit, 8-bit unsigned inte-
ger, 16- or 32-bit signed integer, logical, character, 32- or
64-bit floating point or complex values. The datatype and
dimensionality are independently defined for each column
but each row must have the same structure. Additional
information associated with the table may be included in
the table header as keyword/value pairs.

The binary tables come after the primary data “file”,
in a FITS file and follow the standards for generalized
extension tables defined by Grosbgl et al. (1988). The use
of the binary tables requires the use of a single additional
keyword in the primary header:

1. EXTEND (logical) if true (ASCII “I”) indicates that
there may be extension files following the data records
and, if there are, that they conform to the generalized
extension file header standards.

3. Table header

The table header begins at the first byte in the first record
following the last record of primary data (if any) or fol-
lowing the last record of the previous extension “file”. The
format of the binary table header is such that a given FITS

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

FTIO5ARAS. —I137 ZI59Th

160

reader can decide if it wants (or understands) it and can
skip the table if not.

A table header consists of one or more 2880 8-bit byte
logical records each containing 36 80-byte “card images”
in the form:

keyword = value / comment
where the keyword begins in Col. 1 and contains up to
eight characters and the value begins in Col. 10 or later.
Keyword/value pairs in binary table headers conform to
standard FITS usage.

The number of columns in the table is given by the
value associated with keyword TFIELDS. The type, di-
mensionality, labels, units, blanking values, and display
formats for entries in column nnn may be defined by
the values associated with the keywords TFORMnnn,
TTYPEnnn, TUNITnnn, TNULLnnn, and TDISPnnn.
Of these only TFORMnnn is required but the use of
TTYPEnnn is strongly recommended. An entry may be
omitted from the table, but still defined in the header, by
using a zero element count in the TFORMnnn entry.

The mandatory keywords XTENSION, BITPIX, NAXIS,
NAXIS1, NAXIS2, PCOUNT, GCOUNT and TFIELDS must
be in order; other keywords follow these in an arbitrary
order. The mandatory keywords in a binary table header
record are:

1. XTENSION (character) indicates the type of extension
file, this must be the first keyword in the header. This
is ’BINTABLE’ for the binary tables.

2. BITPIX (integer) gives the number of bits per “pixel”
value. For binary tables this value is 8.

3. NAXIS (integer) gives the number of “axes”; this value
is 2 for binary tables.

4. NAXIS1 (integer) gives the number of 8 bit bytes in
each “row”. This must correspond to the sum of the
values defined in the TFORMnnn keywords.

5. NAXIS2 (integer) gives the number of rows in the table.

6. PCOUNT (integer) is used to tell the number of bytes
following?! the regular portion of the table. These bytes
are allowed but no meaning is attached to them here.
PCOUNT should normally be 0 for binary tables (see
however Appendix A).

7. GCOUNT (integer) gives the number of groups of data
defined as for the random group primary data records.
This is 1 for binary tables.

8. TFIELDS (integer) gives the number of fields (columns)
present in the table.

'This is a serious change from the recommended usage of
PCOUNT in Greisen & Harten (1981) which defines PCOUNT
as the number of bytes preceding the regular portion of the
entry. The Grosbgl et al. (1988) generalized extension header
agreement adopted, but did not define, the PCOUNT keyword.
We take this to allow specific extensions to redefine the loca-
tion of the PCOUNT parameters. This change does not, and
must not, affect conformance with the rules for determining
the size of the table.

W.D. Cotton et al.: Binary table extension to FITS

9. TFORMnnn? (character) gives the size and data type
of field nnn. Allowed values of nnn range from 1 to
the value associated with TFIELDS. Allowed values of
TFORMnnn are of the form rL (logical), rX (bit), rI
(16-bit integers), rJ (32-bit integers), rA (characters),
7E (single precision), rD (double precision), rB (un-
signed bytes), rC (complex {pair of single precision
values}), rM (double complex {pair of double preci-
sion values}) and rP (variable length array descriptor
{64 bits}), where r=number of elements. If the ele-
ment count is absent, it is assumed to be 1. A value of
zero is allowed.? The number of bytes determined from
summing the TFORMnnn values must equal NAXIS1.

10. END is always the last keyword in a header. The re-
mainder of the FITS logical (2880-byte) record follow-
ing the END keyword is blank filled.

The optional reserved keywords are:

1. EXTNAME (character) can be used to give a name
to the extension “file” to distinguish it from other
similar “files”. The name may have a hierarchical
structure giving its relation to other “files” e.g.,
’mapl.cleancomp’)

2. EXTVER (integer) is a version number which can be
used with EXTNAME to identify a “file”. The default
value for EXTVER should be 1.

3. EXTLEVEL (integer) specifies the level of the extension
file in a hierarchical structure. The default value for
EXTLEVEL should be 1.

4. TTYPEnnn (character) gives the label for field nnn.

5. TUNITnnn (character) gives the physical units of field
nnn.

6. TSCALnnn (floating) gives the scale factor for field
nnn, with the formula

True_value = FITS _value x TSCAL + TZERO.

Default value is 1.0.%

7. TZEROnnn (floating) gives the offset for field nnn.
(See TSCALnnn.) Default value is 0.0.

8. TNULLnnn (integer) gives the undefined value for in-
teger (B, I, and J) field nnn. Section 5 (“Table Data
Records”) discusses the conventions for indicating in-
valid data of other types.

9. TDISPnnn (character) gives the Fortran 90 format
suggested for the display of field nnn. Each byte of

2The “nnn” in keyword names indicates an integer index in
the range 1-999. The integer is left justified with no leading
zeroes, e.g. TFORM1, TFORM19, etc.

3 Additional characters may follow the datatype code character
but they are not defined here.

4TSCALnnn and TZEROnnn are not defined for A, L, or X
format fields. For complex data types (C and M), TSCALnnn
and TZEROnnn are the real part of the scaling and offset
factors and the imaginary part is 0. The anticipated mean-
ing of TSCALnnn and TZEROnnn for P fields is described in
Appendix A.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

FTIO5ARAS. —I137 ZI59Th

W.D. Cotton et al.: Binary table extension to FITS

bit and byte arrays will be considered to be an un-
signed integer for purposes of display.® The allowed
forms are Aw, Lw, Iw.m, Bw.m (Binary, integers only),
0w.m (Octal, integers only), Zw.m (Hexidecimal, inte-
gers only), Fw.d, Ew.dEe, ENw.d, ESw.d, Gw.dEe, and
Dw.dEe where w is the width of the displayed value in
characters, m is the minimum number of digits possi-
bly requiring leading zeroes, d is the number of digits
to the right of the decimal, and e is the number of dig-
its in the exponent. All entries in a field are displayed
with a single, repeated format. If Fortran 90 formats
are not available to a reader which prints a table then
equivalent Fortran 77 formats may be substituted. Any
TSCALnnn and TZEROnnn values should be applied
before display of the value.

10. THEAP (integer). This keyword is reserved for use by
the convention described in Appendix A.

11. TDIMnnn (character). This keyword is reserved for use
by the convention described in Appendix B.

12. AUTHOR (character) gives the name of the author or
creator of the table. This is the human or organization
that collected the information given in this table.

13. REFERENC (character) gives the reference for the
table.

Other optional keyword/value pairs adhering to the
FITS keyword standards are allowed although a reader
may choose to ignore them.

4. Conventions for multidimensional arrays

There is commonly a need to use data structures more
complex than the one dimensional definition of the table
entries defined for this table format. Multidimensional ar-
rays, or more complex structures, may be implemented
by passing dimensions or other structural information as
either column entries or keywords in the header. Passing
the dimensionality as column entries has the advantage
that the array can have variable dimension (subject to a
fixed maximum size and storage usage; however, see Ap-
pendix A). A convention for arrays is suggested in Ap-
pendix B and a convention for arrays of character strings
in Appendix C. These and any other conventions will not
require a generalized FITS reader to know or understand
their details.

5. Table data records

The binary table data records begin with the next logical
record following the last header record. If the intersection
of a row and column is an array then the elements of
this array are contiguous and in order of increasing array

5The version of this document voted on by the regional and
TIAU FITS committees stated that the values should be con-
sidered signed. As the values are defined to be unsigned, the
present definition is the preferred one. ’

161

index. Within a row, column entries are stored in order
of increasing column number. Rows are given in order of
increasing row number. All 2880-byte logical records are
completely filled with no extra bytes between columns or
rows. Columns and rows do not necessarily begin in the
first byte of a 2880-byte record. Note that this implies
that a given word may not be aligned in the record along
word boundaries of its type; words may even span 2880—
byte records. The last 2880-byte record should be zero
byte filled past the end of the valid data.

If word alignment is ever considered important for ef-
ficiency considerations then this may be accomplished by
the proper design of the table. The simplest way to ac-
complish this is to order the columns by data type (M, D,
C,P,E, J, I,B, L, A, X) and then add sufficient padding in
the form of a dummy column of type B with the number
of elements such that the size of a row is either an integral
multiple of 2880 bytes or such that an integral number of
rows is 2880 bytes.

The data types are defined in the following list (r is
the number of elements in the entry):

1. rL. A logical value consists of an ASCII “T” indicating
true and “F” indicating false. A null character (zero
byte) indicates an invalid value. Any other values are
illegal.

2. rX. A bit array starts in the most significant bit of the
first byte with the following bits in order of decreasing
significance in the byte. Bit significance is in the same
order as for integers. A bit array entry consists of an
integral number of 8-bit bytes with trailing bits zero.

3. rB. Unsigned 8-bit integer with bits in decreasing or-
der of significance. Signed values may be passed with
appropriate values of TSCALnnn and TZEROnnn.

4. rI. A 16-bit twos-complement integer with the bits in
decreasing order of significance. Unsigned values may
be passed with appropriate values of TSCALnnn and
TZEROnnn.

5. rJ. A 32-bit twos-complement integer with the bits in
decreasing order of significance. Unsigned values may
be passed with appropriate values of TSCALnnn and
TZEROnnn.

6. rA. Character strings are represented by ASCII char-
acters in their natural order. A character string may
be terminated before its explicit length by an ASCII
NUL character. An ASCII NUL as the first character
will indicate an undefined string, i.e. a NULL string.

5No explicit null value is defined for bit arrays but if the ca-
pability of blanking bit arrays is needed it is recommended
that one of the following conventions be adopted: 1) designate
a bit in the array as a validity bit, 2) add an L type column
to indicate validity of the array or 3) add a second bit array
which contains a validity bit for each of the bits in the original
array. Such conventions are beyond the scope of this general
format design and in general readers will not be expected to
understand them.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

FTIO5ARAS. —I137 ZI59Th

162

Legal characters are printable ASCII characters in the
range ’’ (decimal 32) to >~’ (decimal 126) inclusive
and ASCII NUL after the last valid character. Strings
with the full length of the field are not NULL termi-
nated. Characters after the first ASCII NUL are not
defined.

7. TE. Single precision floating point values are in IEEE
32-bit precision format in the order: sign bit, exponent
and mantissa in decreasing order of significance. The
IEEE NaN (not a number) values are used to indicate
an invalid number; a value with all bits set is recog-
nized as a NaN. All IEEE special values are recognized.

8. rD. Double precision floating point values are in IEEE
64-bit precision format in the order: sign bit, exponent
and mantissa in decreasing order of significance. The
IEEE NaN values are used to indicate an invalid num-
ber; a value with all bits set is recognized as a NaN.
All IEEE special values are recognized.

9. rC. A Complex value consists of a pair of IEEE 32-bit
precision floating point values with the first being the
real and the second the imaginary part. If either word
contains a NaN value the complex value is invalid.

10. rM. Double precision complex values. These consist of a
pair of IEEE 64-bit precision floating point values with
the first being the real and the second the imaginary
part. If either word contains a NaN value the complex
value is invalid.

11. rP. Variable length array descriptor. An element is
equal in size to a pair of 32-bit integers (i.e., 64 bits).
The anticipated use of this data type is described in
Appendix A. Arrays of type P are not defined; the r
field is permitted, but values other than 0 or 1 are un-
defined. For purposes of printing, an entry of type P
should be considered equivalent to 2J.

6. Binary table header example

An example of a binary table header, shown in Table 1
contains 5 columns using a number of different data types
and dimensions. The fifth column is a two dimensional ar-
ray using the convention given in Appendix B. Note that
this is an artificial example contrived to show various as-
pects of the binary tables and does not represent recom-
mended practice with regards to celestial coordinates.

A. “Variable length array” facility

One of the most attractive features of binary tables is that
any field of the table can be an array. In the standard case
this is a fixed size array, i.e., a fixed amount of storage is
allocated in each record for the array data—whether it is
used or not. This is fine so long as the arrays are small
or a fixed amount of array data will be stored in each
record, but if the stored array length varies for different
records, it is necessary to impose a fixed upper limit on
the size of the array that can be stored. If this upper limit

W.D. Cotton et al.: Binary table extension to FITS

is made too large excessive wasted space can result and
the binary table mechanism becomes seriously inefficient.
If the limit is set too low then it may become impossible
to store certain types of data in the table.

The “variable length array” construct presented here
was devised to deal with this problem. Variable length ar-
rays are implemented in such a way that, even if a table
contains such arrays, a simple reader program which does
not understand variable length arrays will still be able
to read the main table (in other words a table contain-
ing variable length arrays conforms to the basic binary
table standard). The implementation chosen is such that
the records in the main table remain fixed in size even if
the table contains a variable length array field, allowing
efficient random access to the main table.

Variable length arrays are logically equivalent to regu-
lar static arrays, the only differences being 1) the length of
the stored array can differ for different records, and 2) the
array data is not stored directly in the table records. Since
a field of any datatype can be a static array, a field of any
datatype can also be a variable length array (excluding
type P, the variable length array descriptor itself, which
is not a datatype so much as a storage class specifier).
Conventions such as TDIMnnn (see Appendix B) apply
equally to both to variable length and static arrays.

A variable length array is declared in the table header
with a special field datatype specifier of the form

rPt(mazelem)

where the “P” indicates the amount of space occupied by
the array descriptor in the data record (64 bits), the ele-
ment count “r” should be 0, 1, or absent, ¢t is a character
denoting the datatype of the array data (L, X, B, I, J,
etc., but not P), and mazelem is a quantity guaranteed
to be equal to or greater than the maximum number of
elements of type t actually stored in a table record. There
is no built-in upper limit on the size of a stored array;
mazelem merely reflects the size of the largest array ac-
tually stored in the table, and is provided to avoid the
need to preview the table when, for example, reading a
table containing variable length elements into a database
that supports only fixed size arrays. There may be addi-
tional characters in the TFORMnnn keyword following the
“(mazelem)”.

For example,

TFORM8 = ’PB(1800)’ / Variable byte array
indicates that field 8 of the table is a variable length array
of type byte, with a maximum stored array length not to
exceed 1800 array elements (bytes in this case).

The data for the variable length arrays in a table is
not stored in the actual data records; it is stored in a spe-
cial data area, the heap, immediately following the last
row of data. What is stored in the data record is an array
descriptor. This consists of two 32-bit integer values: the
number of elements (array length) of the stored array, fol-
lowed by the zero-indexed byte offset of the first element

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

FTIO5ARAS. —I137 ZI59Th

W.D. Cotton et al.: Binary table extension to FITS

Table 1. Binary table header example

163

5 6 7 8

data format of the field: ASCII Character

physical unit of field: decimal degrees

physical unit of field: decimal degrees
data format of the field: 4-byte INTEGER

converts EXPOSURE from milliseconds to seconds
converts EXPOSURE from milliseconds to seconds

data format of the field: 2-byte INTEGERS

1 2 3
12345678901234567890123456789012345678901234567890123456789012345678901234567890
XTENSION= ’BINTABLE’ / binary table extension
BITPIX = 8 / 8-bit bytes
NAXIS = 2 / 2-dimensional binary table
NAXIS1 = 4028 / width of table in bytes
NAXIS2 = 270 / number of rows in table
PCOUNT = 0 / size of special data area
GCOUNT = 1 / one data group (mandatory keyword)

TFIELDS = 5 / number in each row

TTYPE1 = ’0BJECT ° / catalog name of the object

TFORM1 = ’16A ’ /

TTYPE2 = ’RA ’ / R.A. of the object

TFORM2 = ’1E ’ / data format of the field: 4-byte REAL
TUNIT2 = ’deg) /

TTYPE3 = ’DEC ’ / declination of the object

TFORM3 = ’1E ’ / data format of the field: 4-byte REAL
TUNIT3 = ’deg ’ /

TTYPE4 = ’EXPOSURE’ / exposure time of the observation

TFORM4 = ’1J ’ /

TUNIT4 = ’s ? / physical unit of field: seconds

TSCAL4 = 1.0E-3 /

TZERO4 = 0.0/

TTYPE5S = ’IMAGE ° / 2-dimensional image

TFORM5 = ’2000I ’ /

TUNITS = ’count ’ / physical unit of field: CCD ADU counts
TDIMS = °(50,40) °’ / dimension of the IMAGE

EXTNAME = ’DETECTED_OBJECTS’ / user-supplied name of this table

EXTVER = 1 / version number of this table

EQUINOX = 2000.0 / equinox in years for the R.A. and dec.

DATE = ’18/08/94°’ / date that this FITS file was created
COMMENT

COMMENT This table contains the set of 50 x 40 pixel subimages that have been
COMMENT extracted from around each detected object in larger CCD images.
COMMENT Each row of this table contains a separate image, along with other
COMMENT descriptive information. Column 1 contains the catalog name of the
COMMENT object, columns 2 and 3 contain the RA and DEC of the object in
COMMENT decimal degrees (equinox = 2000.0), column 4 contains the exposure
COMMENT time, and the image itself is contained in column 5 as a 2-dimensional
COMMENT vector (as specified by the TDIM5 keyword). The original exposure
COMMENT times were given in units of milliseconds, so the TSCAL4 and TZER04
COMMENT keywords are used to convert to units of seconds.

COMMENT

HISTORY This FITS file was created by the FCREATE task.

END

of the array, measured from the start of the heap area.
Storage for the array is contiguous. The array descriptor
for field N as it would appear embedded in a data record
is illustrated symbolically below:
... [field N-1] [(nelem,offset)] [field N+1]...

If the stored array length is zero there is no array data, and
the offset value is undefined (it should be set to zero). The
storage referenced by an array descriptor must lie entirely
within the heap area; negative offsets are not permitted.

A binary table containing variable length arrays con-

sists of three principal segments, as follows:
[table header] [record storage area] [heap ared]

The table header consists of one or more 2880-byte FITS
logical records with the last record indicated by the key-
word END somewhere in the record. The record storage
area begins with the next 2880-byte logical record fol-
lowing the last header record and is NAXIS1 x NAXIS2
bytes in length. The zero indexed byte offset of the heap

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

FTIO5ARAS. —I137 ZI59Th

164

measured from the start of the record storage area is given
by the THEAP keyword in the header. If this keyword is
missing the heap is assumed to begin with the byte imme-
diately following the last data record, otherwise there may
be a gap between the record storage area and the start of
the heap. If there is no gap the value of the heap offset is
NAXIS1 x NAXIS2. The total length in bytes of the heap
area following the last stored record (gap plus heap) is
given by the PCOUNT keyword in the table header.

For example, suppose we have a table containing 5 rows
each 168 byte records, with a heap area 2880 bytes long,
beginning at an offset of 2880, thereby aligning the record
storage and heap areas on FITS record boundaries (this
alignment is not necessarily recommended but is useful for
our example). The data portion of the table consists of 2
2880-byte FITS records, 840 bytes of which are used by
the 5 table records, hence PCOUNT is 2 x 2880 — 840, or
4920 bytes; this is expressed in the table header as:

NAXIS1 = 168 / Width of table row in bytes
NAXIS2 = 5 / Number of rows in table
PCOUNT = 4920 / Random parameter count
THEAP = 2880 / Byte offset of heap area

The values of TSCALnnn and TZEROnnn for variable
length array column entries are to be applied to the values
in the data array in the heap area, not the values of the
array descriptor. These keywords can be used to scale data
values in either static or variable length arrays.

While the above description is sufficient to define the
required features of the variable length array implemen-
tation, some hints regarding usage of the variable length
array facility may also be useful.

Programs which read binary tables should take care
to not assume more about the physical layout of the table
than is required by the specification. For example, there
are no requirements on the alignment of data within the
heap. If efficient runtime access is a concern one may want
to design the table so that data arrays are aligned to the
size of an array element. In another case one might want
to minimize storage and forgo any efforts at alignment (by
careful design it is often possible to achieve both goals).
Variable array data may be stored in the heap in any or-
der, i.e., the data for record N+1 is not necessarily stored
at a larger offset than that for record N. There may be
gaps in the heap where no data is stored. Pointer aliasing
is permitted, i.e., the array descriptors for two or more ar-
rays may point to the same storage location (this could be
used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be
used to store a “typeless” data sequence. Since FITS
is a machine-independent storage format, some form of
machine-specific data conversion (byte swapping, floating
point format conversion) is implied when accessing stored

W.D. Cotton et al.: Binary table extension to FITS

data with types such as integer and floating, but byte ar-
rays are copied to and from external storage without any
form of conversion.

An important feature of variable length arrays is that
it is possible that the stored array length may be zero.
This makes it possible to have a column of the table for
which, typically, no data is present in each stored record.
When data is present the stored array can be as large
as necessary. This can be useful when storing complex
objects as records in a table.

Accessing a binary table stored on a random access
storage medium is straightforward. Since the data records
in the main table are fixed in size they may be randomly
accessed given the record number, by computing the offset.
Once the record has been read in, any variable length array
data may be directly accessed using the element count
and offset given by the array descriptor stored in the data
record.

Reading a binary table stored on a sequential access
storage medium requires that a table of array descriptors
be built up as the main table records are read in. Once all
the table records have been read, the array descriptors are
sorted by the offset of the array data in the heap. As the
heap data is read, arrays are extracted sequentially from
the heap and stored in the affected records using the back
pointers to the record and field from the table of array
descriptors. Since array aliasing is permitted, it may be
necessary to store a given array in more than one field or
record.

Variable length arrays are more complicated than reg-
ular static arrays and imply an extra data access per array
to fetch all the data for a record. For this reason, it is rec-
ommended that regular static arrays be used instead of
variable length arrays unless efficiency or other consider-
ations require the use of a variable array.

This facility is still undergoing trials and is not part of
the basic binary table definition.

B. “Multidimensional array” convention

It is anticipated that binary tables will need to contain
data structures more complex that those describable by
the basic notation. Examples of these are multidimen-
sional arrays and nonrectangular data structures. Suitable
conventions may be defined to pass these structures using
some combination of keyword/value pairs and table en-
tries to pass the parameters of these structures.

One case, multidimensional arrays, is so common
that it is prudent to describe a simple convention.
The “Multidimensional array” convention consists of
the following: any column with a dimensionality of 2
or larger will have an associated character keyword
TDIMnnn=>(l,m,n,...)° where [, m, n,... are the di-
mensions of the array. The data is ordered such that the
array index of the first dimension given (!) is the most

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

-TTIOBAZAS. —I13: ZI59T

W.D. Cotton et al.: Binary table extension to FITS

rapidly varying and that of the last dimension given is the
least rapidly varying. The size implied by the TDIMnnn
keyword will equal the element count specified in the
TFORMnnn keyword. The adherence to this convention
will be indicated by the presence of a TDIMnnn keyword
in the form described above.

A character string is represented in a binary table by
a one-dimensional character array, as described in item 6
(“rA”) in the list of datatypes in Sect. 5 (“Table Data
Records”). For example, a Fortran 77 CHARACTER*20 vari-
able could be represented in a binary table as a character
array declared as TFORMnnn=220A". Arrays of character
strings, i.e., multidimensional character arrays, may be
represented using the TDIMnnn notation. For example, if
TFORMnnn="60A’ and TDIMnnn=’(5,4,3)’, then the
entry consists of a 4 X 3 array of strings of 5 characters
each. (Variable length character strings are allowed by the
convention described in Appendix C. One dimensional ar-
rays of strings should use the convention in Appendix C
rather than the “Multidimensional Array” convention.)

This convention is optional and will not preclude other
conventions. This convention is not part of the binary ta-
ble definition.

C. “Substring array” convention

This appendix describes a layered convention for specify-
ing that a character array field (TFORMnnn="rA’) con-
sists of an array of either fixed-length or variable-length
substrings within the field. This convention utilizes the op-
tion described in the basic binary table definition to have
additional characters following the datatype code charac-
ter in the TFORMnnn value field. The full form for the
value of TFORMnnn within this convention is
’rA:SSTRw/nnn’
where

r is an integer giving the total length including any
delimiters (in characters) of the field,

A signifies that this is a character array field,

: indicates that a convention indicator follows,

SSTR indicates the use of the “Substring Array”
convention,

w is an integer < r giving the (maximum) number
of characters in an individual substring (not in-
cluding the delimiter), and

/nnn if present, indicates that the substrings have
variable-length and are delimited by an ASCII
text character with decimal value nnn in the
range 032 to 126 decimal, inclusive. This char-
acter is referred to as the delimiter character.
The delimiter character for the last substring
will be an ASCII NUL.

To illustrate this usage:

165

404 :SSTR8’ signifies that the field is 40 characters
wide and consists of an array of 5 8-character
fixed-length substrings.

?100A:SSTR8/032° signifies that the field is 100
characters wide and consists of an array of
variable-length substrings where each substring
has a maximum length of 8 characters and, ex-
cept for the last substring, is terminated by an
ASCII SPACE (decimal 32) character.

Note that simple FITS readers that do not understand
this substring convention can ignore the TFORM charac-
ters following the rA and can interpret the field simply as
a single long string as described in the basic binary table
definition.

The following rules complete the full definition of this
convention:

1. In the case of fixed-length substrings, if r is not an
integer multiple of w then the remaining odd charac-
ters are undefined and should be ignored. For example
if TFORMnnn="14A:SSTR3’, then the field contains 4
3-character substrings followed by 2 undefined charac-
ters.

2. Fixed-length substrings must always be padded with
blanks if they do not otherwise fill the fixed-length
subfield. The ASCII NUL character must not be used
to terminate a fixed-length substring field.

3. The character following the delimiter character in
variable-length substrings is the first character of the
following substring.

4. The method of signifying an undefined or null sub-
string within a fixed-length substring array is not ex-
plicitly defined by this convention (note that there is
no ambiguity if the variable-length format is used). In
most cases it is recommended that a completely blank
substring or other adopted convention (e.g. > INDEF’)
be used for this purpose although general readers are
not expected to recognize these as undefined strings.
In cases where it is necessary to make a distinction
between a blank, or other, substring and an undefined
substring use of variable-length substrings is recom-
mended.

5. Undefined or null variable-length substrings are desig-
nated by a zero-length substring, i.e., by a delimiter
character (or an ASCII NUL if it is the last substring
in the table field) in the first position of the substring.
An ASCII NUL in the first character of the table field
indicates that the field contains no defined variable-
length substrings.

6. The “Multidimensional Array”convention described in
Appendix B of this paper provides a syntax using the
TDIMnnn keyword for describing multidimensional ar-
rays of any datatype which can also be used to repre-
sent arrays of fixed-length substrings. For a one di-
mensional array of substrings (a two dimensional ar-
ray of characters) the “Substring Array” convention is

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

FTIO5ARAS. —I137 ZI59Th

166

preferred over the “Multidimensional Array” conven-
tion. Multidimensional arrays of (fixed length) strings
require the use of the “Multidimensional Array” con-
vention.

7. This substring convention may be used in conjunction
with the “Variable Length Array” facility described in
Appendix A of this paper. In this case, the two possible
full forms for the value of the TFORM keyword are
TFORMnnn="rPA(mazelem) : SSTRw/nnn’ and
TFORMnnn=’rPA(mazelem) : SSTRw’
for the variable and fixed cases, respectively.

This convention is optional and will not preclude other
conventions. This convention is not part of the binary ta-
ble definition.

W.D. Cotton et al.: Binary table extension to FITS

Acknowledgements. The authors would like to thank E.
Greisen, D. Wells, P. Grosbgl, B. Hanisch, E. Mandel, E.
Kemper, S. Voels, B. Schlesinger, and many others for invalu-
able discussions and suggestions.

References

Wells D.C., Greisen E-W., Harten R.H. 1981, A&AS 44, 363

Greisen E.W., Harten R.H. 1981, A&AS 44, 371

Grosbgl P., Harten R.H., Greisen E.W., Wells D.C. 1988,
A&AS 73, 359

Harten R.H., Grosbgl P., Greisen E.W., Wells D.C. 1988,
A&AS 73, 365

IEEE. 1985, “American National Standard — IEEE Standard
for Binary Floating Point Arithmetic”’, ANSI/IEEE 754-
1985 (New York: American National Standards Institute,
Inc.)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26AS..113..159C&db_key=AST

