——= NOST

Definition of the Flexible Image Transport System (FITS)

June 18, 1993
Standard

NOST 100-1.0

NASA /Science Office of Standards and Technology
Code 633.2

NASA Goddard Space Flight Center

Greenbelt MD 20771

USA

The NASA /Science Office of Standards and Technology (NOST) has been estab-
lished to serve the space science communities in evolving cost effective, interoperable
data systems. The NOST performs a number of functions designed to facilitate the
recognition, development, adoption, and use of standards by the space science commu-
nities.

Approval of a NOST standard requires verification by the NOST that the following
requirements have been met: consensus of the technical panel, proper adjudication
of the comments received from the targeted space and Earth science community, and
conformance to the accreditation process.

A NOST standard represents the consensus of the technical panel convened by the
NASA /Science Office of Standards and Technology (NOST) of the National Space Sci-
ence Data Center (NSSDC) of the National Aeronautics and Space Administration
(NASA). Consensus is established when the NOST Accreditation Panel determines that
substantial agreement has been reached by the Technical Panel. However, consensus
does not necessarily imply that all members were in full agreement with every item in
the standard. NOST standards are not binding as published; however, they may serve
as a basis for mandatory standards when adopted by NASA or other organizations.

A NOST standard may be revised at any time, depending on developments in the
areas covered by the standard. Also, within five years from the date of its issuance, this
standard will be reviewed by the NOST to determine whether it should 1) remain in
effect without change, 2) be changed to reflect the impact of new technologies or new
requirements, or 3) be retired or canceled.

The Technical Panel that developed this standard consisted of the following mem-
bers:

Robert J. Hanisch, Chair Space Telescope Science Institute
Barry M. Schlesinger, Secretary Hughes STX

Lee E. Brotzman Hughes STX

Edward Kemper Hughes STX

Peter J. Teuben University of Maryland

Michael E. Van Steenberg NASA Goddard Space Flight Center
Wayne H. Warren Jr. Hughes STX

Richard A. White NASA Goddard Space Flight Center

This standard is published and maintained by the NOST. Send comments and orders
for NOST documents to:

NOST, Code 633.2, NASA Goddard Space Flight Center
Greenbelt MD 20771

USA

Internet: nost@nssdca.gsfc.nasa.gov

DECNET: NSSDCA:NOST

301-286-3575

NOST FITS NOST FITS Definition

NASA/OSSA Office of Standards and Technology

CONTENTS 1ii

Contents

Introduction v
1 Overview 1
1.1 Purpose i e 1
1.2 Scopeo e e e e e e e e 1
1.3 Applicability e 1
1.4 Organization and Recommendations 2

2 References 3
3 Definitions, Acronyms, and Symbols 5
4 FITS File Organization 9
4.1 Overall. e e e e e e 9
4.2 Individual FITS Structures 9
4.3 Primary Header and Data Array 9
4.3.1 Primary Header 10

4.3.2 Primary Data Array 10

4.4 Extensions. 0 i i i e e e e e e 10
4.4.1 Requirements for Conforming Extensions 10

4.4.2 Standard Extensionso 11

4.4.3 Order of Extensions 11

4.5 Special Records 12

5 Headers 13
5.1 CardImages ¢ i it ittt 13
5.1.1 Syntaxo e e e e e e 13

5.1.2 Components e e e 13

5.2 Keywords e e e e e e 14
5.2.1 Mandatory Keywords 14

5.2.2 Other Reserved Keywords 17

NOST FITS NOST FITS Definition

iv

CONTENTS

5.2.3 Additional Keywords
53 Value
5.3.1 General Format Requirements.
5.3.2 Fixed Format

6 Data Representation

6.1 Characters. i i
6.2 Integers
6.2.1 Eight-bit
6.2.2 Sixteen-bit
6.2.3 Thirty-two-bit
6.3 IEEE-754 Floating Point
6.3.1 Thirty-two-bit Floating Point
6.3.2 Sixty-four-bit Floating Point

7 Random Groups Structure

7.1 Keywords
7.1.1 Mandatory Keywords
7.1.2 Reserved Keywords

7.2 DataSequence

7.3 Data Representation

8 Standard Extensions

8.1 ASCII Tables Extension
8.1.1 Mandatory Keywords
8.1.2 Other Reserved Keywords
8.1.3 Data Sequence
814 Fields
815 Entries.

8.2 Other Standard Extensions

9 Restrictions on Changes

Appendixes

A Draft Proposal for Binary Table Extension

Al Abstracto
A2 Introduction.,
A3 Binary Tables
A4 TableHeader

NASA/OSSA Office of Standards and Technology

List of Tables v

A.5 Conventions for Multidimensional Arrays 43
A.6 Table Data Records 43
A.7 Example Binary Table Header 45
A.8 Acknowledgments. e 47
A.9 Appendixes to Draft Proposal for Binary Tables Extension 48
A.9.1 “Multidimensional Array” Convention 48

A.9.2 “Variable Length Array” Facility 48

B Implementation on Physical Media 53
B.1 Block Size e 53
B.1.1 Nine-Track, Half-Inch Magnetic Tape 53

B.1.2 Other Media, 53

B.2 Physical Properties of Media 54
B.3 Labeling 0 e e e 54
B3.1 Tape . . . o o v it e e e e e e e e e e e e 54

B.3.2 Other Media 54

B.4 FITS File Boundaries, 54
B.4.1 Magnetic Reel Tape 54

B.42 Other Media 54

B.5 Multiple Physical Volumes, 54

C Differences from IAU-endorsed Publications 57
D Summary of Keywords 63
E ASCII Text 65
F IEEE Special Formats 67
G Reserved Extension Type Names 69
H NOST Publications 73
Index 75

List of Tables

5.1 Principal mandatory keywords.o 14
5.2 Interpretation of valid BITPIX value. 15
5.3 Mandatory keywords in conforming extensions. 16
6.1 Content of 32-bit floating point bit positions. 24

NOST FITS NOST FITS Definition

vi List of Figures
6.2 Content of 64-bit floating point bit positions. 25
7.1 Mandatory keywords in primary header preceding random groups. . .. 28
8.1 Mandatory keywords in ASCII tables extensions. 32
8.2 Valid TFORMn format values in TABLE extensions. 33
D.1 Mandatory FITS keywords 63
D.2 Reserved FITS keywords vt i i, 64
D.3 General Reserved FITS keywords 64
E.1 ASCII character set i 66
F.1 IEEE special floating point formats 68
G.1 Reserved Extension Type Names 70
G.2 Status Codes e e e 71
H.1 NOST Publications 73

List of Figures

4.1

Array datasequencettt e e e e e 11

NASA/OSSA Office of Standards and Technology

vil

Introduction

The Flexible Image Transport System (FITS) evolved out of the recognition that a
standard format was needed for transferring astronomical data from one installation to
another. The original form, or Basic FITS [1], was designed for the transfer of images
and comnsisted of a binary array, usually multidimensional, preceded by an ASCII text
header with information describing the organization and contents of the array. The FITS
concept was later expanded to accommodate more complex data formats. A new format
for image transfer, random groups, was defined [2] in which the data would consist of a
series of arrays, with each array accompanied by a set of associated parameters. These
formats were formally endorsed by the International Astronomical Union (IAU) in 1982
[3]. Provisions for data structures other than simple arrays or groups were made later.
These structures appear in extensions, each consisting of an ASCII header followed
by the data whose organization it describes. A set of general rules governing such
extensions [4] and a particular extension, ASCII Tables [5], were endorsed by the IAU
General Assembly in 1988 [6]. At the same General Assembly, an IAU FITS Working
Group was formed with the mandate to maintain the existing FITS standards and to
review, approve, and maintain future extensions to FITS, recommended practices for
FITS, implementations, and the thesaurus of approved FITS keywords [7]. In 1989,
the IAU Commission 5 FITS Working Group approved a formal agreement [8] for the
representation of floating point numbers. FITS was originally designed and defined for
9-track half-inch magnetic tape. However, as improvements in technology have brought
forward other data storage and data distribution media, it has generally been agreed
that the FITS format is to be understood as a logical format and not defined in terms
of the physical characteristics of any particular data storage medium or media.

NOST FITS NOST FITS Definition

NASA/OSSA Office of Standards and Technology

Section 1

Overview

1.1 Purpose

This standard formally defines the FITS format for data structuring and exchange that
is to be used where applicable as defined in Section 1.3. It is intended as a formal
codification of the FITS format that has been endorsed by the IAU for transfer of
astronomical data, fully consistent with all actions and endorsements of the IAU and
the IAU Commission 5 FITS Working Group. Minor ambiguities and inconsistencies in
FITS as described in the original papers are eliminated. The eventual goal is to submit
this document to the IAU Commission 5 FITS Working Group for endorsement as a
universal standard for FITS.

1.2 Scope

This standard specifies the organization and content of FITS data sets, including the
header and data, for all standard FITS formats: Basic FITS, the random groups struc-
ture, and the ASCII tables extension. It also specifies minimum structural requirements
for new extensions and general principles governing the creation of new extensions, giv-
ing as an example the draft proposal for a Binary Table Extension. For headers, it
specifies the proper syntax for card images and defines required and reserved keywords.
For data, it specifies character and value representations and the ordering of contents
within the byte stream. It defines the general rules to which new extensions are required
to conform.

1.3 Applicability

The TAU has recommended that all astronomical computer facilities support FITS for
the interchange of binary data. All spacecraft projects and astrophysics data archives

NOST FITS NOST FITS Definition

2 SECTION 1. OVERVIEW

under the management of the Astrophysics Division of the National Aeronautics and
Space Administration are required to make processed data available to users in the FITS
format defined by this standard, unless the Astrophysics Division specifically determines
otherwise. This standard may also be used to define the format for data transport in
other disciplines, as may be determined by the appropriate authorities.

1.4 Organization and Recommendations

Following the definitions in Section 3, this document describes the overall organization
of a FITS file, the contents of the first (primary) header and data, and the rules for
creating new FITS extensions in Section 4. The next two sections provide additional
details on the header and data, with a particular focus on the primary header. Section 5
provides details about header card image syntax and specifies those keywords required
and reserved in a primary header. Section 6 describes how different data types are rep-
resented in FITS. The following sections describe the headers and data of two standard
FITS structures, the now to be deprecated random groups records (Section 7) and the
only current standard extension, ASCII Tables (Section 8). Throughout the document,
deprecation of structures or syntax is noted where relevant. Files containing deprecated
features are valid FITS, but these features should not be used in new files; the old files
using them remain standard because of the principle that no change in FITS shall cause
a valid FITS file to become invalid.

The Appendixes contain material that is not part of the standard. The first two
provide illustrations of FITS practice. Appendix A provides an example of a conforming
extension, the draft proposal for the Binary Table Extension [9]. The generally accepted
recommendations for the expression of the logical FITS format on various physical
media are provided in Appendix B as a guide to FITS practices. Appendix C lists
the differences between this standard and the specifications of prior publications; it
also identifies those ambiguities in the documents endorsed by the IAU on which this
standard provides specific rules. The next four provide reference information: a tabular
summary of the FITS keywords (Appendix D), a list of the ASCII character set and a
subset designated ASCII text (Appendix E), the bit representation of the IEEE special
values (Appendix F), and a list of the reserved extension type names (Appendix G).

NASA/OSSA Office of Standards and Technology

Section 2

References

10.

. Wells, D. C., Greisen, E. W., and Harten, R. H. 1981, “FITS: A Flexible Image

Transport System,” Astron. Astrophys. Suppl., 44, 363-370.

. Greisen, E. W. and Harten, R. H. 1981, “An Extension of FITS for Small Arrays

of Data,” Astron. Astrophys. Suppl., 44, 371-374.

. IAU. 1983, Information Bulletin No. 49.

. Grosbgl, P., Harten, R. H., Greisen, E. W., and Wells, D. C. 1988, “Generalized

Extensions and Blocking Factors for FITS,” Astron. Astrophys. Suppl., 73, 359—
364.

. Harten, R. H., Grosbgl, P., Greisen, E. W., and Wells, D. C. 1988, “The FITS

Tables Extension,” Astron. Astrophys. Suppl., 73, 365-372.

. TAU. 1988, Information Bulletin No. 61.

. McNally, D., ed. 1988, Transactions of the IAU, Proceedings of the Twentieth

General Assembly (Dordrecht: Kluwer).

. Wells, D. C. and Grosbgl, P. 1990, “Floating Point Agreement for FITS.” (avail-

able from the NOST FITS Support Office)

. Cotton, W. D. and Tody, D. B. 1991, “Binary Table Extension to FITS: A Pro-

posal,” preprint. (access instructions available from the NOST FITS Support
Office)

ANSI. 1978, “American National Standard for Information Processing: Program-
ming Language FORTRAN,” ANSI X3.9-1978 (ISO 1539) (New York: American

National Standards Institute, Inc.).

NOST FITS NOST FITS Definition

SECTION 2. REFERENCES

11

12.

13.

14.

15.

16.

17.

ANSI. 1977, “American National Standard for Information Processing: Code for
Information Interchange,” ANSI X3.4-1977 (ISO 646) (New York: American Na-
tional Standards Institute, Inc.).

IEEE. 1985, “American National Standard — IEEE Standard for Binary Floating
Point Arithmetic”. ANSI/IEEE 754-1985 (New York: American National Stan-
dards Institute, Inc.).

ANSI. 1976, “American National Standard for Information Processing: Unrecor-
ded Magnetic Tape,” ANSI X3.40-1976 (New York: American National Standards
Institute, Inc.).

ANSI. 1978, “American National Standard for Information Processing: Magnetic
Tape Labels and File Structure,” ANSI X3.27-1978 (New York: American Na-
tional Standards Institute, Inc.).

“Going AIPS,” 1990, National Radio Astronomy Observatory, Charlottesville, VA.

Ponz, J. D., Thompson, R. W., and Muiioz, J. R. 1992, “The FITS IMAGE
Extension. A Proposal,” preprint. (available from the NOST FITS Support
Office)

Munoz, J. R. “IUE data in FITS Format,” 1989, ESA IUE Newsletter, 32, 12-45.

NASA/OSSA Office of Standards and Technology

Section 3

Definitions, Acronyms, and
Symbols

u Used to designate an ASCII blank.

ATIPS Abbreviation of Astronomical Image Processing System.
ANSI Abbreviation of American National Standards Institute.
Array A sequence of data values, of zero or more dimensions.

Array value The value of an element of an array in a FITS file, without the application
of the associated linear transformation to derive the physical value.

ASCII Abbreviation of American National Standard Code for Information Interchange.
ASCII blank Hexadecimal 20.

ASCII character Any member of the 7-bit ASCII character set.

ASCII text ASCII characters hexadecimal 20-7E.

Basic FITS The FITS structure consisting of the primary header followed by a single
primary data array.

Bit A single binary digit.
Byte A string of eight bits treated as a single entity.
Card image A sequence of 80 bytes containing ASCII text, treated as a logical record.

CfA Abbreviation of Harvard-Smithsonian Center for Astrophysics.

NOST FITS NOST FITS Definition

6 SECTION 3. DEFINITIONS, ACRONYMS, AND SYMBOLS

Conforming extension An extension whose keywords and organization adhere to the
requirements for conforming extensions defined in Section 4.4.1 of this standard.

Deprecate To express earnest disapproval of. This term is used to refer to obsolete
structures that ought not to be used but remain valid.

Entry A value or set of values (i. e., a vector) associated with a specific row or column
in a table.

ESO Abbreviation of European Southern Observatory.
Extension A FITS HDU appearing after the primary HDU in a FITS file.

Extension name The identifier used to distinguish a particular extension HDU from
others of the same type, appearing as the value of the EXTNAME keyword.

Extension type An extension format.
Field A set of zero or more table entries collectively described by a single format.

File A sequence of one or more records terminated by an end-of-file indicator appro-
priate to the medium.

FITS Abbreviation of Flexible Image Transport System.
FITS file A file with a format that conforms to the specifications in this document.

FITS logical record A record of 23040 bits corresponding to 2880 8-bit bytes within
a FITS file.

FITS structure One of the components of a FITS file: the primary HDU, the random
groups records, an extension, or, collectively, the special records following the last
extension.

Floating point A number whose bit structure is composed of a mantissa and exponent,
whose ASCII representation contains an explicit decimal point and may include a
power-of-ten exponent.

Group parameter value The value of one of the parameters preceding a group in
the random groups structure, without the application of the associated linear
transformation.

GSFC Abbreviation of Goddard Space Flight Center.

Header A series of card images organized within one or more FITS Logical Records
which describes structures and/or data which follow it in the FITS file.

NASA/OSSA Office of Standards and Technology

Header and Data Unit (HDU) A data structure consisting of a Header and the
data the Header describes. Note that an HDU may consist entirely of a header
with no data records.

IAU Abbreviation of International Astronomical Union.

IUE Abbreviation of International Ultraviolet Explorer.

IEEE Abbreviation of Institute of Electrical and Electronic Engineers.
IEEE NaN Abbreviation of IEEE Not-a-Number value.

IEEE special values (-0, oo, NaN, denormalized).

Indexed keyword A keyword that is of the form of a fixed root with an appended
integer count.

Keyword The first eight bytes of a header card image.

Mandatory keyword A keyword that must be used in all FITS files or a keyword
required in conjunction with particular FITS structures.

Matrix A data array of two or more dimensions.

MIDAS Abbreviation of ESO-MIDAS, the European Southern Observatory — Munich
Image Data Analysis System.

NOAO Abbreviation of National Optical Astronomy Observatories.
NOST Abbreviation of NASA /Science Office of Standards and Technology.
NRAO Abbreviation of National Radio Astronomy Observatory.

Physical value The value in physical units represented by a member of an array and
possibly derived from the array value using the associated, but optional, linear
transformation.

Picture element A single location within an image array.
Pixel Abbreviation of “picture element”.
Primary data array The data array contained in the Primary HDU.

Primary header The first header in a FITS file, containing information on the overall
contents of the file as well as on the primary data array.

Record A sequence of bits treated as a single logical entity.

NOST FITS NOST FITS Definition

8 SECTION 3. DEFINITIONS, ACRONYMS, AND SYMBOLS

Reference point The point along a given coordinate axis, given in units of pixel num-
ber, at which a value and increment are defined.

Reserved keyword An optional keyword that may be used only in the manner defined
in this standard.

Special records A series of 23040-bit (2880 8-bit byte) records, following the primary
HDU, whose internal structure does not otherwise conform to that for the primary
HDU or to that specified for a conforming extension in this standard.

Standard extension A conforming extension whose header and data content are spec-
ified explicitly in this standard.

STScl Abbreviation of Space Telescope Science Institute.

Type name The value of the XTENSION keyword used to identify the type of the ex-
tension in the data following.

Valid value A member of a data array or table corresponding to an actual physical
quantity.

NASA/OSSA Office of Standards and Technology

Section 4

FITS File Organization

4.1 Overall

A FITS file shall be composed of the following FITS structures, in the order listed:
e Primary HDU

¢ Random Groups structure (optional; allowed only if there is no primary data
array)

¢ Conforming Extensions (optional)

e Other special records (optional)

Each FITS structure shall consist of an integral number of FITS logical records.
The primary HDU shall start with the first record of the FITS file. The first record
of each subsequent FITS structure shall be the record immediately following the last
record of the preceding FITS structure. The size of a FITS logical record shall be 23040
bits, corresponding to 2880 8-bit bytes.

4.2 Individual FITS Structures

The primary HDU and every extension HDU shall consist of an integral number of
header records consisting of ASCII text, which may be followed by an integral number
of data records. The first record of data shall be the record immediately following the
last record of the header.

4.3 Primary Header and Data Array

The first component of a FITS file shall be the primary header. The primary header
may, but need not be, followed by a primary data array. The presence or absence of a

NOST FITS NOST FITS Definition

10 SECTION 4. FITS FILE ORGANIZATION

primary data array shall be indicated by the values of the NAXIS or NAXISn keywords
in the primary header (Section 5.2.1.1).

4.3.1 Primary Header

The header of a primary HDU shall consist of a series of card images in ASCII text. All
header records shall consist of 36 card images. Card images without information shall

be filled with ASCII blanks (hexadecimal 20).

4.3.2 Primary Data Array

In FITS format, the primary data array shall consist of a single data array of 0-999 di-
mensions. The data values shall be a byte stream with no embedded fill or blank space.
The first value shall be in the first position of the first primary data array record. The
first value of each subsequent row of the array shall be in the position immediately
following the last value of the previous row. Arrays of more than one dimension shall
consist of a sequence such that the index along axis 1 varies most rapidly, that along
axis 2 next most rapidly, and those along subsequent axes progressively less rapidly,
with that along axis m, where m is the value of NAXIS, varying least rapidly; i.e., the
elements of an array A(z1,2,...,) shall be in the order shown in Figure 4.1. The
index count along each axis shall begin with 1 and increment by 1 up to the value of
the NAXISn keyword (Section 5.2.1.1). If the data array does not fill the final record,
the remainder of the record shall be filled with zero values with the same data repre-
sentation as the values in the array. For IEEE floating point data, values of +0. shall
be used to fill the remainder of the record.

4.4 Extensions

4.4.1 Requirements for Conforming Extensions

All extensions, whether or not further described in this standard, shall fulfill the follow-
ing requirements to be in conformance with this FITS standard.

4.4.1.1 Identity

Each extension type shall have a unique type name, specified in the header according
to the syntax codified in Section 5.2.1.2. To preclude conflict, extension type names
must be registered with the IAU Commission 5 FITS Working Group. The NOST shall
maintain and provide a list of the registered extensions.

NASA/OSSA Office of Standards and Technology

4.4. EXTENSIONS 11

A‘(17 17 ? 1)7
A‘(27 17 ? 1)7
:7
A(NAXIS1, 1,..., 1),
A(1,2,...,1),
A(2,2,...,1),
:7
A(NAXISL, 2,..., 1),
:7
A(1, NAXIS2, ..., NAXISm),

:7
A(NAXIS1, NAXIS2, ..., NAXISm)

Figure 4.1: Arrays of more than one dimension shall consist of a sequence such that the
index along axis 1 varies most rapidly and those along subsequent axes progressively
less rapidly. Except for the location of the first element, array structure is independent
of record structure.

4.4.1.2 Size Specification

The total number of bits in the data of each extension shall be specified in the header
for that extension, in the manner prescribed in Section 5.2.1.2.

4.4.1.3 Compatibility with Existing FITS Files

No extension shall be constructed that invalidates existing FITS files.

4.4.2 Standard Extensions

A standard extension shall be a conforming extension whose organization and content
are completely specified in this standard. Only one FITS format shall be approved for
each type of data organization. Each standard extension shall have a unique type name.

4.4.3 Order of Extensions

An extension may follow the primary HDU (or random groups records if present) or
another conforming extension. Standard extensions and other conforming extensions
may appear in any order in a FITS file.

NOST FITS NOST FITS Definition

12 SECTION 4. FITS FILE ORGANIZATION

4.5 Special Records

The first 8 bytes of special records must not contain the string “XTENSION”. It is rec-
ommended that they not contain the string “SIMPLE,,”. The records must have the
standard FITS 23040-bit record length. The contents of special records are not other-
wise specified by this standard.

NASA/OSSA Office of Standards and Technology

13

Section 5

Headers

5.1 Card Images

5.1.1 Syntax

Header card images shall consist of a keyword, an optional value, and an optional
comment. Except where specifically stated otherwise in this standard, keywords may
appear in any order.

5.1.2 Components
5.1.2.1 Keyword (bytes 1-8)

The keyword shall be a left justified, 8-character, blank filled, ASCII string with no
embedded blanks. All digits (hexadecimal 30 to 39,“0123456789”) and upper case Latin
alphabetic characters (hexadecimal 41 to 5A, “ABCDEFG HIJKLMN OPQRST UVWXYZ”) are
permitted; no lower case characters shall be used. The underscore (hexadecimal 5F,
“) and hyphen (hexadecimal 2D, “-”) are also permitted. No other characters are
permitted. For indexed keywords, the counter shall not have leading zeroes.

5.1.2.2 Value Indicator (bytes 9-10)
If this field contains an ASCII “=,”, the keyword must have an associated value field,
unless it is a commentary keyword as defined in Section 5.2.2.4.

5.1.2.3 Value/Comment (bytes 11 - 80)

This field, when used, shall contain the value, if any, of the keyword, followed by optional
comments. Separation of the value and comments by a slash (hexadecimal 2F, “/”), and
a space between the value and the slash are strongly recommended. The value shall be

NOST FITS NOST FITS Definition

14 SECTION 5. HEADERS

the ASCII text representation of a string or constant, in the format specified in Section
5.3. The comment may contain any ASCII text.

5.2 Keywords

5.2.1 Mandatory Keywords

Mandatory keywords are required as described in the remainder of this subsection. They
may be used only as described in this standard.

5.2.1.1 Principal

Principal mandatory keywords other than SIMPLE are required in all FI7T'S headers. The
SIMPLE keyword is required in all primary headers. The card images of any primary
header must contain the keywords shown in Table 5.1 in the order given.

SIMPLE
BITPIX
NAXIS
NAXISn,n = 1, ..., NAXIS

> W N =

(other keywords)

last END

Table 5.1: Principal mandatory keywords.

The total number of bits in the primary data array, exclusive of fill that is needed
after the data to complete the last record (Section 4.1), must be given by the following
expression:

NBITS = |BITPIX|X
(NAXIS1 X NAXIS2 X --- X NAXISm), (5.1)

where NBITS is non-negative and the number of bits excluding fill, m is the value of NAXIS,
and BITPIX and the NAXISn represent the values associated with those keywords.

SIMPLE Keyword The value field shall contain a logical constant with the value T if
the file conforms to this standard. This keyword is mandatory only for the primary

NASA/OSSA Office of Standards and Technology

5.2. KEYWORDS 15

header. A value of F signifies that the file does not conform to this standard in some
significant way.

BITPIX Keyword The value field shall contain an integer. The absolute value is
used in computing the sizes of data structures. It shall specify the number of bits that
represent a data value. The only valid values of BITPIX are given in Table 5.2.

Value Data Represented

8 Character or unsigned binary integer
16 16-bit twos-complement binary integer
32 32-bit twos-complement binary integer

-32 IEEE single precision floating point
-64 IEEE double precision floating point

Table 5.2: Interpretation of valid BITPIX value.

NAXIS Keyword The value field shall contain a non-negative integer no greater than

999, representing the number of axes in an ordinary data array. A value of zero signifies
that no data follow the header in the HDU.

NAXISn Keywords The value field of this indexed keyword shall contain a non-
negative integer, representing the number of positions along axis n of an ordinary data
array. The NAXISn must be present for all valuesn = 1,...,NAXIS. A value of zero for
any of the NAXISn signifies that no data follow the header in the HDU. If NAXIS is equal
to 0, there should not be any NAXISn keywords.

END Keyword This keyword has no associated value. Columns 9-80 shall be filled
with ASCII blanks.

5.2.1.2 Conforming Extensions

The use of extensions necessitates a single additional keyword in the primary header of

the FITS file.

EXTEND Keyword If the FITS file may contain extensions, a card image with the
keyword EXTEND and the value field containing the logical value T must appear in the
primary header immediately after the last NAXISn card image, or, if NAXIS=0, the NAXIS

NOST FITS NOST FITS Definition

16 SECTION 5. HEADERS

card image. The presence of this keyword with the value T in the primary header does
not require that extensions be present.

The card images of any extension header must use the keywords defined in Table
5.3 in the order specified. This organization is required for any conforming extension,
whether or not further specified in this standard.

XTENSION
BITPIX
NAXIS
NAXISn,n = 1, ..., NAXIS

> W N =

(other keywords, including . ..)
PCOUNT
GCOUNT

last END

Table 5.3: Mandatory keywords in conforming extensions.

The total number of bits in the extension data array exclusive of fill that is needed
after the data to complete the last record (Section 4.1) such as that for the primary
data array (Section 4.3.2) must be given by the following expression:

NBITS = |BITPIX| X GCOUNT X
(PCOUNT + NAXIS1 X NAXIS2 X --- X NAXISm), (5.2)

where NBITS is non-negative and the number of bits excluding fill, m is the value of
NAXIS, and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated
with those keywords.

XTENSION Keyword The value field shall contain a character string giving the name
of the extension type. This keyword is mandatory for an extension header and must
not appear in the primary header. For an extension that is not a standard extension,
the type name must not be the same as that of a standard extension.

The TAU Commission 5 FITS Working Group may specify additional type names
that must be used only to identify specific types of extensions; the full list shall be
available from the NOST.

NASA/OSSA Office of Standards and Technology

5.2. KEYWORDS 17

PCOUNT Keyword The value field shall contain an integer that shall be used in any
way appropriate to define the data structure, consistent with equation 5.2.

GCOUNT Keyword The value field shall contain an integer that shall be used in any
way appropriate to define the data structure, consistent with equation 5.2.

5.2.2 Other Reserved Keywords

These keywords are optional but may be used only as defined in this standard. These
keywords apply to any FITS structure except where specifically further restricted.

5.2.2.1 Keywords Describing the History or Physical Construction of the
HDU

DATE Keyword The value field shall contain a character string giving the date on
which the HDU was created, in the form DD/MM/YY, where DD shall be the day of the
month, MM the month number, with January given by 01 and December by 12, and
YY the last two digits of the year. Specification of the date using Universal Time is
recommended. Copying of a FITS file does not require changing any of the keyword
values in the file’s HDUs.

ORIGIN Keyword The value field shall contain a character string identifying the or-
ganization creating the FITS file.

BLOCKED Keyword This keyword may be used only in the primary header. It shall
appear within the first 36 card images of the FITS file. (Note: This keyword thus
cannot appear if NAXIS is greater than 31, or if NAXIS greater than 30 and the EXTEND
keyword is present.) Its presence with the required logical value of T advises that the
physical block size of the FITS file on which it appears may be an integral multiple of
the logical record length, and not necessarily equal to it. Physical block size and logical
record length may be equal even if this keyword is present or unequal if it is absent.
It is reserved primarily to prevent its use with other meanings. The issuance of this
standard deprecates the BLOCKED keyword.

5.2.2.2 Keywords Describing Observations

DATE-0BS Keyword The value field shall contain a character string giving the day
on which the observations represented by the array were made, in the form DD/MM/YY,
where DD shall be the day of the month, MM the month number, with January given by
01 and December by 12, and YY the last two digits of the year. Specification of the date
using Universal Time is recommended.

NOST FITS NOST FITS Definition

18 SECTION 5. HEADERS

TELESCOP Keyword The value field shall contain a character string identifying the
telescope used to acquire the data contained in the array.

INSTRUME Keyword The value field shall contain a character string identifying the
instrument used to acquire the data contained in the array.

0BSERVER Keyword The value field shall contain a character string identifying who
acquired the data associated with the header.

0BJECT Keyword The value field shall contain a character string giving the name of
the object observed.

EQUINOX Keyword The value field shall contain a floating point number giving the
equinox in years for the celestial coordinate system in which positions given in either
the header or data are expressed.

EPOCH Keyword The value field shall contain a floating point number giving the
equinox in years for the celestial coordinate system in which positions given in either
the header or data are expressed. This document deprecates the use of the EPOCH
keyword and thus it shall not be used in FITS files created after the adoption of this
standard; rather, the EQUINOX keyword shall be used.

5.2.2.3 Bibliographic Keywords

AUTHOR Keyword The value field shall contain a character string identifying who
compiled the information in the data associated with the header. This keyword is
appropriate when the data originate in a published paper or are compiled from many
sources.

REFERENC Keyword The value field shall contain a character string citing a reference
where the data associated with the header are published.

5.2.2.4 Commentary Keywords

COMMENT Keyword This keyword shall have no associated value; columns 9-80 may
contain any ASCII text. Any number of COMMENT card images may appear in a header.

HISTORY Keyword This keyword shall have no associated value; columns 9-80 may
contain any ASCII text. The text should contain a history of steps and procedures
associated with the processing of the associated data. Any number of HISTORY card
images may appear in a header.

NASA/OSSA Office of Standards and Technology

5.2. KEYWORDS 19

Keyword Field is Blank Columns 1-8 contain ASCII blanks. Columns 9-80 may
contain any ASCII text. Any number of card images with blank keyword fields may
appear in a header.

5.2.2.5 Array Keywords

These keywords are used to describe the contents of an array, either alone or in a series
of random groups. They are optional, but if they appear in the header describing an
array or groups, they must be used as defined in this section of this standard. They
shall not be used in headers describing other structures unless the meaning is the same
as that for a primary or groups array.

BSCALE Keyword This keyword shall be used, along with the BZERO keyword, when
the array pixel values are not the true physical values, to transform the primary data
array values to the true physical values they represent, using equation 5.3. The value
field shall contain a floating point number representing the coefficient of the linear term
in the scaling equation, the ratio of physical value to array value at zero offset. The
default value for this keyword is 1.0.

BZERO Keyword This keyword shall be used, along with the BSCALE keyword, when
the array pixel values are not the true physical values, to transform the primary data
array values to the true values. The value field shall contain a floating point number
representing the physical value corresponding to an array value of zero. The default
value for this keyword is 0.0.

The transformation equation is as follows:

physical value = BZERO + BSCALE X array value (5.3)

BUNIT Keyword The value field shall contain a character string, describing the phys-
ical units in which the quantities in the array, after application of BSCALE and BZERO,
are expressed. Use of the units defined in the IAU Style Manual [7] is recommended.

BLANK Keyword This keyword shall be used only in headers with positive values of
BITPIX (i.e., in arrays with integer data). Columns 1-8 contain the string, “BLANK,,.”
(ASCII blanks in columns 6-8). The value field shall contain an integer that specifies
the representation of array values whose physical values are undefined.

CTYPEn Keywords The value field shall contain a character string, giving the name
of the coordinate represented by axis n. Where this coordinate represents a physical
quantity, units defined in the IAU Style Manual [7] are recommended.

NOST FITS NOST FITS Definition

20 SECTION 5. HEADERS

CRPIXn Keywords The value field shall contain a floating point number, identifying
the location of a reference point along axis n, in units of the axis index. This value is
based upon a counter that runs from 1 to NAXISn with an increment of 1 per pixel. The
reference point value need not be that for the center of a pixel nor lie within the actual
data array. Use comments to indicate the location of the index point relative to the
pixel.

CRVALn Keywords The value field shall contain a floating point number, giving the
value of the coordinate specified by the CTYPEn keyword at the reference point CRPIXn.

CDELTn Keywords The value field shall contain a floating point number, giving the
partial derivative of the coordinate specified by the CTYPEn keywords with respect to the
pixel index, evaluated at the reference point CRPIXn, in units of the coordinate specified
by the CTYPEn keyword.

CROTAn Keywords This keyword is used to indicate a rotation from a standard co-
ordinate system described by the CTYPEn to a different coordinate system in which the
values in the array are actually expressed. Rules for such rotations are not further spec-
ified in this standard; the rotation should be explained in comments. The value field
shall contain a floating point number, giving the rotation angle in degrees between axis
n and the direction implied by the coordinate system defined by CTYPEn.

DATAMAX Keyword The value field shall always contain a floating point number, re-
gardless of the value of BITPIX. This number shall give the maximum valid physical
value represented in the array, exclusive of any special values.

DATAMIN Keyword The value field shall always contain a floating point number, re-
gardless of the value of BITPIX. This number shall give the minimum valid physical
value represented in the array, exclusive of any special values.

5.2.2.6 Extension Keywords

These keywords are used to describe an extension.

EXTNAME Keyword The value field shall contain a character string, to be used to
distinguish among different extensions of the same type, i.e., with the same value of
XTENSION, in a FITS file.

NASA/OSSA Office of Standards and Technology

5.3. VALUE 21

EXTVER Keyword The value field shall contain an integer, to be used to distinguish
among different extensions in a FITS file with the same type and name, i.e., the same
values for XTENSION and EXTNAME. The values need not start with 1 for the first extension
with a particular value of EXTNAME and need not be in sequence for subsequent values.
If the EXTVER keyword is absent, the file should be treated as if the value were 1.

EXTLEVEL Keyword The value field shall contain an integer, specifying the level in a
hierarchy of extension levels of the extension header containing it. The value shall be 1
for the highest level; levels with a higher value of this keyword shall be subordinate to
levels with a lower value. If the EXTLEVEL keyword is absent, the file should be treated
as if the value were 1.

5.2.3 Additional Keywords

5.2.3.1 Requirements

New keywords may be devised in addition to those described in this standard, so long
as they are consistent with the generalized rules for keywords and do not conflict with
mandatory or reserved keywords.

5.2.3.2 Restrictions

No keyword in the primary header shall specify the presence of a specific extension
in a FITS file; only the EXTEND keyword described in Section 5.2.1.2 shall be used
to indicate the possible presence of extensions. No keyword in either the primary or
extension header shall explicitly refer to the physical block size, other than the BLOCKED
keyword of Section 5.2.2.1.

5.3 Value

5.3.1 General Format Requirements

Unless otherwise specified, the value field must be written in a notation consistent with
the list-directed read operations in ANSI FORTRAN-77 [10]. The structure shall be
determined by the type of the variable. The fixed format is required for values of
mandatory keywords and recommended for values of all others. This standard imposes
no requirements on case sensitivity of character strings other than those explicitly spec-

ified.

NOST FITS NOST FITS Definition

22 SECTION 5. HEADERS

5.3.2 Fixed Format
5.3.2.1 Character String

If the value is a character string, column 11 shall contain a single quote (hexadecimal
code 27, “’”); the string shall follow, starting in column 12, followed by a closing
single quote (also hexadecimal code 27) that should not occur before column 20 and
must occur in or before column 80. Reading the data values in a FITS file should not
require decoding any more than the first eight characters of a character string value of a
keyword. The character string shall be composed only of ASCII text. A single quote is
represented within a string as two successive single quotes, e.g., O’HARA = ’0° ’HARA’.
Leading blanks are significant; trailing blanks are not.

5.3.2.2 Logical Variable

If the value is a logical constant, it shall appear as a T or F in column 30.

5.3.2.3 Integer

If the value is an integer, the ASCII representation shall appear right justified in columns
11-30. For a complex integer, the imaginary part shall be right justified in columns
31-50. This format for complex integers does not correspond to ANSI FORTRAN-T77
list-directed read.

5.3.2.4 Real Floating Point Number

If the value is a real floating point number, the ASCII representation shall appear in
columns 11-30. Letters in the exponential form shall be upper case. The value shall be
right justified, and the decimal point must appear. Note: The full precision of 64-bit
values can not be expressed as a single value using the fixed format.

5.3.2.5 Complex Floating Point Number

If the value is a complex floating point number, the ASCII representation of the real
part shall appear in the same manner as a real floating point number (see above). The
ASCII representation of the imaginary part shall appear in columns 31 - 50. Letters
in the exponential form shall be upper case. The value shall be right justified, and the
decimal point must appear. This format for complex floating point numbers does not
correspond to ANSI FORTRAN-77 list-directed read. Note: The full precision of 64-bit
values can not be expressed as a single value using the fixed format.

NASA/OSSA Office of Standards and Technology

23

Section 6

Data Representation

Primary and extension data shall be represented in one of the formats described in this
section. FITS data shall be interpreted to be a byte stream. Bytes are in order of
decreasing significance. The byte that includes the sign bit shall be first, and the byte
that has the ones bit shall be last.

6.1 Characters

Each character shall be represented by one byte. A character shall be represented by its
7-bit ASCII [11] code in the low order seven bits in the byte. The high-order bit shall
be zero.

6.2 Integers

6.2.1 Eight-bit

Eight-bit integers shall be unsigned binary integers, contained in one byte.

6.2.2 Sixteen-bit

Sixteen-bit integers shall be twos-complement signed binary integers, contained in two
bytes.

6.2.3 Thirty-two-bit

Thirty-two-bit integers shall be twos-complement signed binary integers, contained in
four bytes.

NOST FITS NOST FITS Definition

24 SECTION 6. DATA REPRESENTATION

6.3 IEEE-754 Floating Point

Transmission of 32- and 64-bit floating point data within the FITS format shall use the
ANSI/IEEE-754 standard [12]. BITPIX = -32 and BITPIX = -64 signify 32- and 64-
bit IEEE floating point numbers, respectively; the absolute value of BITPIX is used for
computing the sizes of data structures. The full IEEE set of number forms is allowed for
FITS interchange, including all special values (e.g., the “Not-a-Number” cases). The
order of the bytes will be sign and exponent first, followed by the mantissa bytes in
order of decreasing significance. The BLANK keyword should not be used when BITPIX
= -32 or -64. Use of the BSCALE and BZERO keywords is not recommended.

6.3.1 Thirty-two-bit Floating Point
6.3.1.1 Structure

Table 6.1 describes the bit structure of 32-bit floating point standard numeric values.

Bit Positions Content
(first to last)

1 sign
2-9 exponent
10 - 32 mantissa

Table 6.1: Content of 32-bit floating point bit positions.

6.3.1.2 Interpretation

Standard numeric values of IEEE 32-bit floating point numbers are interpreted according
to the following rule:

value = (—1)Sign x 2(6XPONENt—127) o 1 antissa (6.1)

The IEEE NaN (Not-a-Number) values shall be used to represent undefined values.
All IEEE special values are recognized.

6.3.2 Sixty-four-bit Floating Point
6.3.2.1 Structure

Table 6.2 describes the bit structure of 64-bit floating point standard numeric values.

NASA/OSSA Office of Standards and Technology

6.3. IEEE-754 FLOATING POINT

25

Bit Positions Content
(first to last)

1 sign
2-12 exponent
13 - 64 mantissa

Table 6.2: Content of 64-bit floating point bit positions.

6.3.2.2 Interpretation

Standard numeric values for IEEE 64-bit floating point numbers are interpreted accord-

ing to the following rule:

value = (—1)Sign x 2(6XPONeNt—1023) o 1 antissa (6.2)

The IEEE NaN (Not-a-Number) values shall be used to represent undefined values.

All IEEE special values are recognized.

NOST FITS NOST FITS Definition

26 SECTION 6. DATA REPRESENTATION

NASA/OSSA Office of Standards and Technology

27

Section 7

Random Groups Structure

Although it is standard FITS, the random groups structure has been used almost exclu-
sively for applications in radio interferometry; outside this field, few FITS readers can
read data in random groups format. A proposed binary tables extension will eventually
be able to accommodate the structure described by random groups. While existing
FITS files use the format, and it is therefore included in this standard, its use for future
applications is deprecated by this document.

7.1 Keywords

7.1.1 Mandatory Keywords

If the random groups format records follow the primary header, the card images of the
primary header must use the keywords defined in Table 7.1 in the order specified.

The total number of bits in the random groups records exclusive of the fill described
in Section 7.2 must be given by the following expression:

NBITS = |BITPIX| X GCOUNT x
(PCOUNT + NAXIS2 X NAXIS3 X --- X NAXISm), (7.1)

where NBITS is non-negative and the number of bits excluding fill, m is the value of
NAXIS, and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated
with those keywords.

7.1.1.1 SIMPLE Keyword

The card image containing this keyword is structured in the same way as if a primary
data array were present (Section 5.2.1).

NOST FITS NOST FITS Definition

28 SECTION 7. RANDOM GROUPS STRUCTURE

SIMPLE

BITPIX

NAXIS

NAXIS1

NAXISn, n=2, ..., value of NAXIS

Ol W N~

(other keywords, which must include ...)
GROUPS
PCOUNT
GCOUNT

last END
Table 7.1: Mandatory keywords in primary header preceding random groups.

7.1.1.2 BITPIX Keyword

The card image containing this keyword is structured as prescribed in Section 5.2.1.

7.1.1.3 NAXIS Keyword

The value field shall contain an integer ranging from 1 to 999, representing one more
than the number of axes in each data array.

7.1.1.4 NAXIS1 Keyword

The value field shall contain the integer 0, a signature of random groups format indi-
cating that there is no primary data array.

7.1.1.5 NAXISn Keywords (n=2, ..., value of NAXIS)

The value field shall contain an integer, representing the number of positions along axis
n-1 of the data array in each group.

7.1.1.6 GROUPS Keyword

The value field shall contain the logical constant T. The value T associated with this
keyword implies that random groups records are present.

NASA/OSSA Office of Standards and Technology

7.1. KEYWORDS 29

7.1.1.7 PCOUNT Keyword

The value field shall contain an integer equal to the number of parameters preceding
each group.

7.1.1.8 GCOUNT Keyword

The value field shall contain an integer equal to the number of random groups present.

7.1.1.9 END Keyword

The card image containing this keyword is structured as described in Section 5.2.1.

7.1.2 Reserved Keywords
7.1.2.1 PTYPEn Keywords

The value field shall contain a character string giving the name of parameter n. If the
PTYPEn keywords for more than one value of n have the same associated name in the value
field, then the data value for the parameter of that name is to be obtained by adding the
derived data values of the corresponding parameters. This rule provides a mechanism
by which a random parameter may have more precision than the accompanying data
array members; for example, by summing two 16-bit values with the first scaled relative
to the other such that the sum forms a number of up to 32-bit precision.

7.1.2.2 PSCALn Keywords

This keyword shall be used, along with the PZEROn keyword, when the n*" FITS group
parameter value is not the true physical value, to transform the group parameter value
to the true physical values it represents, using equation 7.2. The value field shall contain
a floating point number representing the coefficient of the linear term in equation 7.2,
the scaling factor between true values and group parameter values at zero offset. The
default value for this keyword is 1.0.

7.1.2.3 PZEROn Keywords

This keyword shall be used, along with the PSCALn keyword, when the n*" FITS group
parameter value is not the true physical value, to transform the group parameter value
to the physical value. The value field shall contain a floating point number, representing
the true value corresponding to a group parameter value of zero. The default value for
this keyword is 0.0. The transformation equation is as follows:

physical value = PZEROn 4 PSCALn X groupparametervalue (7.2)

NOST FITS NOST FITS Definition

30 SECTION 7. RANDOM GROUPS STRUCTURE

7.2 Data Sequence

Random groups data shall consist of a set of groups. The number of groups shall be
specified by the GCOUNT keyword in the associated header record. Each group shall
consist of the number of parameters specified by the PCOUNT keyword followed by an
array with the number of members GMEM given by the following expression:

GMEM = (NAXIS2 x NAXIS3 X ---X NAXISm). (7.3)

where GMEM is the number of members in the data array in a group, m is the value of
NAXIS, and the NAXISn represent the values associated with those keywords.

The first parameter of the first group shall appear in the first location of the first
data record. The first element of each array shall immediately follow the last parameter
associated with that group. The first parameter of any subsequent group shall imme-
diately follow the last member of the array of the previous group. The arrays shall be
organized internally in the same way as an ordinary primary data array. If the groups
data do not fill the final record, the remainder of the record shall be filled with zero val-
ues in the same way as a primary data array (Section 4.3.2). If random groups records
are present, there shall be no primary data array.

7.3 Data Representation

Permissible data representations are those listed in Section 6. Parameters and members
of associated data arrays shall have the same representation. Should more precision be
required for an associated parameter than for a member of a data array, the parameter
shall be divided into two or more addends, represented by the same value for the PTYPEn
keyword. The value shall be the sum of the physical values, which may have been
obtained from the group parameter values using the PSCALn and PZEROn keywords.

NASA/OSSA Office of Standards and Technology

31

Section 8

Standard Extensions

8.1 ASCII Tables Extension

Data shall appear as an ASCII Tables extension if the primary header of the FITS file
has the keyword EXTEND set to T and the first keyword of that extension header has
XTENSION=,’ TABLE ,,’.

8.1.1 Mandatory Keywords

The card images in the header of an ASCII Tables Extension must use the keywords
defined in Table 8.1 in the order specified.

XTENSION Keyword The value field shall contain the character string
>TABLE,,,,°.

BITPIX Keyword The value field shall contain the integer 8, denoting that the array
contains ASCII characters.

NAXIS Keyword The value field shall contain the integer 2, denoting that the included
data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the
number of ASCII characters in each row of the table.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the
number of rows in the table.

PCOUNT Keyword The value field shall contain the integer 0.

NOST FITS NOST FITS Definition

32 SECTION 8. STANDARD EXTENSIONS

XTENSION
BITPIX
NAXIS
NAXTIS1
NAXIS2
PCOUNT
GCOUNT
TFIELDS

00 -~ O Ol b W=

(other keywords, which must include ...)
TBCOLn, n=1,2,...,k where k is the value of TFIELDS
TFORMn, n=1,2,...,k where k is the value of TFIELDS

last END
Table 8.1: Mandatory keywords in ASCII tables extensions.

GCOUNT Keyword The value field shall contain the integer 1; the data records contain
a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing
the number of fields in each row. The maximum permissible value is 999.

TBCOLn Keywords The value field of this indexed keyword shall contain an integer
specifying the column in which field n starts. The first column of a row is numbered 1.

TFORMn Keywords The value field of this indexed keyword shall contain a character
string describing the FORTRAN-77 [10] format in which field n is coded. The formats
in Table 8.2 are permitted for encoding.

Repetition of a format from one field to the next must be indicated by using separate
pairs of TBCOLn and TFORMn keywords for each field; format repetition may not be
indicated by prefixing the format by a number.

END Keyword This keyword has no associated value. Columns 9-80 shall contain

ASCII blanks.

NASA/OSSA Office of Standards and Technology

8.1. ASCII TABLES EXTENSION 33

Field Value Data Type
Aw Character
Iw Integer
Fw.d Single precision real

Ew.d Single precision real, exponential notation
Dw.d Double precision real, exponential notation

Table 8.2: Valid TFORMn format values in TABLE extensions.

8.1.2 Other Reserved Keywords

In addition to the mandatory keywords defined in section 8.1.1, these keywords may be
used to describe the structure of an ASCII Tables data array. They are optional, but if
they appear within an ASCII Tables extension header, they must be used as defined in
this section of this standard.

TSCALn Keywords This indexed keyword shall be used, along with the TZEROn key-
word, when the quantity in field n does not represent a true physical quantity. The
value field shall contain a floating point number representing the coefficient of the linear
term in equation 8.1, which must be used to compute the true physical value of the field.

The default value for this keyword is 1.0. This keyword may not be used for A-format
fields.

TZEROn Keywords This indexed keyword shall be used, along with the TSCALn key-
word, when the quantity in field n does not represent a true physical quantity. The
value field shall contain a floating point number representing the zero point for the true
physical value of field n. The default value for this keyword is 0.0. This keyword may
not be used for A-format fields.

The transformation equation used to compute a true physical value from the quantity
in field n is

physical value = TZEROn + TSCALn X field value. (8.1)

TNULLn Keywords The value field for this indexed keyword shall contain the character
string that represents an undefined value for field n. The string is implicitly blank filled
to the width of the field.

TTYPEn Keywords The value field for this indexed keyword shall contain a character
string, giving the name of field n. It is recommended that only letters, digits, and un-

NOST FITS NOST FITS Definition

34 SECTION 8. STANDARD EXTENSIONS

derscore (hexadecimal code 5F, “_”) be used in the name. However, string comparisons
with the values of TTYPEn keywords should not be case sensitive. The use of identical
names for different fields should be avoided.

TUNITn Keywords The value field shall contain a character string describing the phys-
ical units in which the quantity in field n, after any application of TSCALn and TZEROn,
is expressed. Use of the units defined in the IAU Style Manual [7] is recommended.

8.1.3 Data Sequence

The table is constructed from a two-dimensional array of ASCII characters. The row
length and the number of rows shall be those specified, respectively, by the NAXIS1 and
NAXIS2 keywords of the associated header records. The number of characters in a row
and the number of rows in the table shall determine the size of the character array.
Every row in the array shall have the same number of characters. The first character
of the first row shall be at the start of the record immediately following the last header
record. The first character of subsequent rows shall follow immediately the character at
the end of the previous row, independent of the record structure. The positions in the
last data record after the last character of the last row of the data array shall be filled
with ASCII blanks.

8.1.4 Fields

Each row in the array shall consist of a sequence of fields, with one entry in each field.
For every field, the FORTRAN-77 format of the information contained, location in the
row of the beginning of the field and (optionally) the field name, shall be specified in
keywords of the associated header records. A separate format keyword must be provided
for each field. The location and format of fields shall be the same for every row. Fields
may overlap. There may be characters in a table row that are not included in any field.

8.1.5 Entries

All data in an ASCII tables extension record shall be ASCII text in formats that conform
to the rules for fixed field input in ANSI FORTRAN-77 [10] format, including implicit
decimal points. The only possible formats shall be those specified in Table 8.2. If
values of -0 and 40 must be distinguished, then the sign character should appear in a
separate field in character format. TNULLn keywords may be used to specify a character
string that represents an undefined value in each field. The characters representing
an undefined value may differ from field to field but must be the same within a field.
ASCII Table extension data should be decoded as though the FORTRAN-77 OPEN
statement specifier BLANK is set to NULL. That is, blanks within the fields are not to
be interpreted as zeroes; zeroes must be given explicitly.

NASA/OSSA Office of Standards and Technology

8.2. OTHER STANDARD EXTENSIONS 35

8.2 Other Standard Extensions

At the effective date of this standard there are no other standard extensions.

NOST FITS NOST FITS Definition

36 SECTION 8. STANDARD EXTENSIONS

NASA/OSSA Office of Standards and Technology

37

Section 9

Restrictions on Changes

Any structure that is a valid FITS structure shall remain a valid FITS structure at all
future times. Use of certain valid FITS structures may be deprecated by this or future
FITS standard documents.

NOST FITS NOST FITS Definition

38 SECTION 9. RESTRICTIONS ON CHANGES

NASA/OSSA Office of Standards and Technology

39

Appendix A

Draft Proposal for Binary Table
Extension

(This Appendix is not part of the NOST FITS Standard but is included for informa-
tional purposes only.)

This appendix contains a draft proposal for a Binary Table extension, type name
“BINTABLE”, developed by W. D. Cotton (NRAO) and D. Tody (NOAO), dated
September 20, 1991. With their permission, that proposal [9] is reproduced nearly ver-
batim; the only changes are those required for stylistic consistency with the rest of this
document. The BINTABLE extension has been developed from the earlier ASDTABLE
extension implemented in ATPS by NRAO. It supports all features of the earlier, more
limited extension. Binary tables files have been successfully exchanged between a num-
ber of organizations, among them NRAO, ESO, STScI, NASA/GSFC and CfA. How-
ever, some features of the binary tables extension, such as vector table elements, are
not supported by all FITS readers, and other FITS readers may not support binary
tables at all. The extension is now being considered by the regional FITS committees
as part of the process leading to formal approval by the IAU FITS Working Group. Be-
cause it is becoming widely used, and because it illustrates an application of the rules
for conforming extensions, the text of the proposal is included as the remainder of this
Appendix.

A.1 Abstract

This paper describes the FITS binary tables which are a flexible and efficient means of
transmitting a wide variety of data structures. Table rows may be a mixture of a number
of numerical, logical and character data entries. In addition, each entry is allowed to be
a single dimensioned array. Numeric data are kept in IEEE formats.

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE
40 EXTENSION

A.2 Introduction

The Flexible Image Transport System (FITS) [1], [2] has been used for a number of years
both as a means of transporting data between computers and/or processing systems and
as an archival format for a variety of astronomical data. The success of this system has
resulted in the introduction of enhancements. In particular, considerable use has been
made of the records following the “main” data file. Grosbgl et al. [4] introduced a
generalized header format for extension “files” following the “main” data file, but in
the same physical file. Harten et al. [5] defined an ASCII table structure which could
convey information that could be conveniently printed as a table. This paper generalizes
the ASCII tables and defines an efficient means for conveying a wide variety of data
structures as “extension” files.

A.3 Binary Tables

The binary tables are tables in the sense that they are organized into rows and columns.
They are multi-dimensional since an entry, or set of values associated with a given
row and column, can be an array of arbitrary size. These values are represented in a
standardized binary form. Each row in the table contains an entry for each column.
This entry may be one of a number of different data types, 8 bit unsigned integers, 16
or 32 bit signed integers, logical, character, bit, 32 or 64 bit floating point or complex
values. The datatype and dimensionality are independently defined for each column
but each row must have the same structure. Additional information associated with the
table may be included in the table header as keyword/value pairs.

The binary tables come after the “main” data file, if any, in a FITS file and follow
the standards for generalized extension tables defined in [4].

The use of the binary tables requires the use of a single additional keyword in the
main header:

EXTEND (logical) if true (ASCII ’T’) indicates that there may be extension files fol-
lowing the data records and, if there are, that they conform to the generalized extension
file header standards.

A.4 Table Header

The table header begins at the first byte in the first record following the last record of
main data (if any) or following the last record of the previous extension file. The format
of the binary table header is such that a given FITS reader can decide if it wants (or
understands) it and can skip the table if not.

NASA/OSSA Office of Standards and Technology

A.4. TABLE HEADER 41

A table header consists of one or more 2880 8-bit byte logical records each containing
36 80-byte “card images” in the form:

keyword = value / comment

where the keyword begins in column 1 and contains up to eight characters and the value
begins in column 10 or later. Keyword/value pairs in binary table headers conform to
standard FITS usage.

The number of columns in the table is given by the value associated with keyword
TFIELDS. The type, dimensionality, labels, units, blanking values, and display formats
for entries in column nnn may be defined by the values associated with the keywords
TFORMnnn, TTYPEnnn, TUNITnnn, TNULLnnn, and TDISPnnn. Of these only TFORMnnn is
required but the use of TTYPEnnn is strongly recommended. An entry may be omitted
from the table, but still defined in the header, by using a zero element count in the
TFORMnnn entry.

The required keywords XTENSION, BITPIX, NAXIS, NAXIS1, NAXIS2, PCOUNT, GCOUNT
and TFIELDS must be in order; other keywords follow these in an arbitrary order. The
required keywords in a binary table header record are:

XTENSION (character) indicates the type of extension file, this must be the first key-
word in the header. This is *BINTABLE’ for the binary tables.

BITPIX (integer) gives the number of bits per “pixel” value. For binary tables this
value is 8.

NAXIS (integer) gives the number of “axes”; this value is 2 for binary tables.

NAXIS1 (integer) gives the number of 8 bit bytes in each “row”. This should corre-
spond to the sum of the values defined in the TFORMnnn keywords.

NAXIS2 (integer) gives the number of rows in the table.

PCOUNT (integer) is used to tell the number of bytes following the regular portion of
the table. These bytes are allowed but no meaning is attached to them in this document.
PCOUNT should normally be 0 for binary tables (see however Section A.9.2).

GCOUNT (integer) gives the number of groups of data defined as for the random group
main data records. This is 1 for binary tables.

TFIELDS (integer) gives the number of fields (columns) present in the table.

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE
42 EXTENSION

TFORMnnn! (character) gives the size and data type of field nnn. Allowed values of
nnn range from 1 to the value associated with TFIELDS. Allowed values of TFORMnnn are
of the form rL, rX, rI, tJ, rA, rE, D, rB, rC, tM, or rP (logical, bit, 16-bit integers, 32-
bit integers, characters, single precision, double precision, unsigned bytes, complex pair
of single precision values, double complex pair of double precision values and variable
length array descriptor [64 bits|) where r=number of elements. If the element count is
absent, it is assumed to be 1. A value of zero is allowed. Note: additional characters
may follow the datatype code character but they are not defined in this document.
The number of bytes determined from summing the TFORMnnn values should equal
NAXIS1 but NAXIS1 should be used as the definition of the actual length of the row.

END is always the last keyword in a header. The remainder of the FITS logical (2880—
byte) record following the END keyword is blank filled.
The optional standard keywords are:

EXTNAME (character) can be used to give a name to the extension file to distinguish it
from other similar files. The name may have a hierarchical structure giving its relation

to other files (e.g., “mapl.cleancomp”)

EXTVER (integer) is a version number which can be used with EXTNAME to identify a
file.

EXTLEVEL (integer) specifies the level of the extension file in a hierarchical structure.
The default value for EXTLEVEL should be 1.

TTYPEnnn (character) gives the label for field nnn.
TUNITnnn (character) gives the physical units of field nnn.

TSCALnnn (floating) gives the scale factor for field nnn. True value = FITS value
TSCAL + TZERO. Note: TSCALnnn and TZEROnnn are not defined for A, L, P, or X format
fields. Default value is 1.0.

TZEROnnn (floating) gives the offset for field nnn. (See TSCALnnn.) Default value is
0.0.

TNULLnnn (integer) gives the undefined value for integer (B, I, and J) field nnn.
Section A.6 discusses the conventions for indicating invalid data of other data types.

!The “nnn” in keyword names indicates an integer index in the range 1 - 999. The integer is left
justified with no leading zeroes, e.g. TFORM1, TFORM19, etc.

NASA/OSSA Office of Standards and Technology

A.5. CONVENTIONS FOR MULTIDIMENSIONAL ARRAYS 43

TDISPnnn (character) gives the Fortran 90 format suggested for the display of field
nnn. Each byte of bit and byte arrays will be considered to be a signed integer for
purposes of display. The allowed forms are Aw, Lw, Iw.m, Bw.m (Binary, integers
only), Ow.m (Octal, integers only), Zw.m (Hexadecimal, integers only) Fw.d, Ew.dEe,
ENw.d, ESw.d, Gw.dEe, and Dw.dEe where w is the width of the displayed value in
characters, m is the minimum number of digits possibly requiring leading zeroes, d is
the number of digits to the right of the decimal, and e is the number of digits in the
exponent. All entries in a field are displayed with a single, repeated format. If Fortran
90 formats are not available to a reader which prints a table then equivalent FORTRAN
77 formats may be substituted. Any TSCALnnn and TZEROnnn values should be applied
before display of the value. Note that characters and logical values may be null (zero
byte) terminated.

TDIMnnn (character) This keyword is reserved for use by the convention described in
Section A.9.1.

THEAP (integer) This keyword is reserved for use by the convention described in
Section A.9.2.

AUTHOR (character) gives the name of the author or creator of the table.

REFERENC (character) gives the reference for the table.
Nonstandard keyword/value pairs adhering to the FITS keyword standards are al-
lowed although a reader may chose to ignore them.

A.5 Conventions for Multidimensional Arrays

There is commonly a need to use data structures more complex than the one dimen-
sional definition of the table entries defined for this table format. Multidimensional
arrays, or more complex structures, may be implemented by passing dimensions or
other structural information as either column entries or keywords in the header. Pass-
ing the dimensionality as column entries has the advantage that the array can have
variable dimension (subject to a fixed maximum size and storage usage). A convention
is suggested in Section A.9.1.

A.6 Table Data Records

The binary table data records begin with the next logical record following the last
header record. If the intersection of a row and column is an array then the elements of
this array are contiguous and in order of increasing array index. Within a row, columns

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE
44 EXTENSION

are stored in order of increasing column number. Rows are given in order of increasing
row number. All 2880-byte logical records are completely filled with no extra bytes
between columns or rows. Columns and rows do not necessarily begin in the first byte
of a 2880-byte record. Note that this implies that a given word may not be aligned in
the record along word boundaries of its type; words may even span 2880-byte records.
The last 2880-byte record should be zero byte filled past the end of the valid data.

If word alignment is ever considered important for efficiency considerations then this
may be accomplished by the proper design of the table. The simplest way to accomplish
this is to order the columns by data type (M, D, C, P, E, J, I, B, L, A, X) and then
add sufficient padding in the form of a dummy column of type B with the number of
elements such that the size of a row is either an integral multiple of 2880 bytes or an
integral number of rows is 2880 bytes.

The data types are defined in the following list (r is the number of elements in the
entry):

rL A logical value consists of an ASCII “T” indicating true and “F” indicating false.
A null character (zero byte) indicates an invalid value.

rX A bit array will start in the most significant bit of the byte and the following bits
in the order of decreasing significance in the byte. Bit significance is in the same order
as for integers. A bit array entry consists of an integral number of bytes with trailing
bits zero.

No explicit null value is defined for bit arrays but if the capability of blanking bit
arrays is needed it is recommended that one of the following conventions be adopted:
1) designate a bit in the array as a validity bit, 2) add an L type column to indicate
validity of the array or 3) add a second bit array which contains a validity bit for each
of the bits in the original array. Such conventions are beyond the scope of this general
format design and in general readers will not be expected to understand them.

rB Unsigned 8-bit integer with bits in decreasing order of significance. Signed values
may be passed with appropriate values of TSCALnnn and TZEROnnn.

rI A 16-bit twos-complement integer with the bits in decreasing order of significance.
Unsigned values may be passed with appropriate values of TSCALnnn and TZEROnnn.

rJ A 32-bit twos-complement integer with the bits in decreasing order of significance.
Unsigned values may be passed with appropriate values of TSCALnnn and TZEROnnn.

NASA/OSSA Office of Standards and Technology

A.7. EXAMPLE BINARY TABLE HEADER 45

rA Character strings are represented by ASCII characters in their natural order. A
character string may be terminated before its explicit length by an ASCII NULL char-
acter. An ASCII NULL as the first character will indicate an undefined string i.e. a
NULL string. Legal characters are printable ASCII characters in the range ’ ’ (hex
20) to *~? (hex 7TE) inclusive and ASCII NULL after the last valid character. Strings
the full length of the field are not NULL terminated.

rE Single precision floating point values are in IEEE 32-bit precision format in the
order: sign bit, exponent and mantissa in decreasing order of significance. The IEEE
NaN (not a number) values are used to indicate an invalid number; a value with all bits
set is recognized as a NaN. All IEEE special values are recognized.

rD Double precision floating point values are in IEEE 64-bit precision format in the
order: sign bit, exponent and mantissa in decreasing order of significance. The IEEE
NaN values are used to indicate an invalid number; a value with all bits set is recognized
as a NaN. All IEEE special values are recognized.

rC A Complex value consists of a pair of IEEE 32-bit precision floating point values
with the first being the real and the second the imaginary part. If either word contains
a NaN value the complex value is invalid.

rM Double precision complex values. These consist of a pair of IEEE 64-bit precision
floating point values with the first being the real and the second the imaginary part. If
either word contains a NaN value the complex value is invalid.

rP Variable length array descriptor. An element is equal in size to a pair of 32-bit
integers (i.e., 64 bits). The anticipated use of this data type is described in Section
A.9.2. Arrays of type P are not defined; the r field is permitted, but values other than
0 or 1 are undefined. For purposes of printing, an entry of type P should be considered
equivalent to 2J.

A.7 Example Binary Table Header

The following is an example of a binary table header which has 19 columns using a
number of different data types and dimensions. Columns labeled “IFLUX”, “QFLUX?”,
“UFLUX”, “VFLUX”, “FREQOFF”, “LSRVEL” and “RESTFREQ” are arrays of di-
mension 2. Columns labeled “SOURCE” and “CALCODE” are character strings of
length 16 and 4 respectively. The nonstandard keywords “NO_IF”, VELTYP”, and
“VELDEF” also appear at the end of the header. The first two lines of numbers are
only present to show card columns and are not part of the table header.

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE

46 EXTENSION
1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678
901234
XTENSION= ’BINTABLE’ / Extension type
BITPIX = 8 / Binary data
NAXIS = 2 / Table is a matrix
NAXIS1 = 168 / Width of table row in bytes
NAXIS2 = 5 / Number of rows in table
PCOUNT = 0 / Random parameter count
GCOUNT = 1 / Group count
TFIELDS = 19 / Number of columns in each row
EXTNAME = ’AIPS SU ° / AIPS source table
EXTVER = 1 / Version number of table
TFORM1 = °1I ’ / 16-bit integer
TTYPE1 = ’ID. NO. >/ Type (label) of column 1
TUNIT1 = ’ / Physical units of column 1
TFORM2 = ’16A ’ / Character string
TTYPE2 = ’SOURCE >/ Type (label) of column 2
TUNIT2 = ’ / Physical units of column 2
TFORM3 = ’1I ’ / 16-bit integer
TTYPE3 = ’QUAL >/ Type (label) of column 3
TUNIT3 = ’ / Physical units of column 3
TNULL3 = 32767 / Undefined value for column 3
TFORM4 = 44 ’ / Character string
TTYPE4 = ’CALCODE >/ Type (label) of column 4
TUNIT4 = ’ / Physical units of column 4
TFORM5 = ’2E ’ / Single precision array
TTYPES = ’IFLUX > / Type (label) of column 5
TUNITS = °JY ’ / Physical units of column 5
TFORM6 = ’2E ’ / Single precision array
TTYPE6 = ’QFLUX >/ Type (label) of column 6
TUNIT6 = ’JY ’ / Physical units of column 6
TFORM7 = ’2E ’ / Single precision array
TTYPE7 = ’UFLUX >/ Type (label) of column 7
TUNIT7 = °JY ’ / Physical units of column 7
TFORM8 = ’2E ’ / Single precision array
TTYPE8 = ’VFLUX >/ Type (label) of column 8
TUNIT8 = °JY ’ / Physical units of column 8
TFORM9 = ’2D ’ / Double precision array.
TTYPE9 = ’FREQOFF >/ Type (label) of column 9
TUNIT9 = ’HZ ’ / Physical units of column 9
TSCAL9 = 1.0D9 / Scaling factor of column 9
TZERO9 = 0.0 / O0ffset of column 9
TFORM10 = ’1D ’ / Double precision
TTYPE10 = ’*BANDWIDTH ’ / Type (label) of column 10
TUNIT10 = ’HZ ’ / Physical units of column 10

NASA/OSSA Office of Standards and Technology

A.8. ACKNOWLEDGMENTS 47

TFORM11 = °1D ’

TTYPE11 = ’RAEPO ’
TUNIT11 = ’DEGREES °’

TFORM12 = °1D ’

TTYPE12 = ’DECEPO ’
TUNIT12 = ’DEGREES °’

TFORM13 = ’1D ’

TTYPE13 = ’EPOCH ’
TUNIT13 = ’YEARS ’

TFORM14 = ’1D ’

TTYPE14 = ’RAAPP ’
TUNIT14 = ’DEGREES °’

TFORM15 = ’1D ’

TTYPE15 = ’DECAPP ’
TUNIT15 = ’DEGREES °’

TFORM16 = °2D ’

TTYPE16 = ’LSRVEL ’
TUNIT16 = ’M/SEC ’

TFORM17 = °2D ’

TTYPE17 = ’*RESTFREQ ’
TUNIT17 = ’HZ ’

TDISP17 = ’D17.10°

TFORM18 = ’1D ’

TTYPE18 = ’PMRA ’
TUNIT18 = ’DEG/DAY °

TFORM19 = °1D ’

TTYPE19 = ’PMDEC ’
TUNIT19 = ’DEG/DAY °

Double precision

Type (label) of column 11
Physical units of column 11
Double precision

Type (label) of column 12
Physical units of column 12
Double precision

Type (label) of column 13
Physical units of column 13
Double precision

Type (label) of column 14
Physical units of column 14
Double precision

Type (label) of column 15
Physical units of column 15
Double precision array

Type (label) of column 16
Physical units of column 16
Double precision array

Type (label) of column 17
Physical units of column 17
Display format of column 17
Double precision array

Type (label) of column 18
Physical units of column 18
Double precision array

Type (label) of column 19
Physical units of column 19

N N N

NO_TIF = 2
VELTYP = ’LSR ’
VELDEF = ’OPTICAL °’
END

A.8 Acknowledgments

The authors would like to thank E. Greisen, D. Wells, P. Grosbgl, B. Hanisch, E.
Mandel, E. Kemper, S. Voels, B. Schlesinger, W. Pence and many others for invaluable
discussions and suggestions.

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE
48 EXTENSION

A.9 Appendixes to Draft Proposal for Binary Tables Ex-
tension

A.9.1 “Multidimensional Array” Convention

It is anticipated that binary tables will need to contain data structures more complex
that those describable by the basic notation. Examples of these are multidimensional
arrays and nonrectangular data structures. Suitable conventions may be defined to pass
these structures using some combination of keyword/value pairs and table entries to
pass the parameters of these structures.

One case, multidimensional arrays, is so common that it is prudent to describe a
simple convention. The “Multidimensional array” convention consists of the follow-
ing: any column with a dimensionality of 2 or larger will have an associated character
keyword TDIMnnn=’(l, m, n, ...)’ where 1, m, n, ... are the dimensions of the array.
The data is ordered such that the array index of the first dimension given (1) is the
most rapidly varying and that of the last dimension given is the least rapidly varying.
The size implied by the TDIMnnn keyword will equal the element count specified in the
TFORMnnn keyword. The adherence to this convention will be indicated by the presence
of a TDIMnnn keyword in the form described above.

A character string is represented in a binary table by a one-dimensional character ar-
ray, as described in section A.6. For example, a FORTRAN CHARACTER*20 variable
could be represented in a binary table as a character array declared as TFORMn = "20A °.
Arrays of character strings, i.e., multidimensional character arrays, may be represented
using the TDIMnnn notation. If a column is an array of strings then each string may
be null terminated. For example, if TFORMn="20A’ and TDIMn=’(5, 4)’ then the entry
consists of 4 strings of up to 5 characters each of which may be null terminated.

This convention is optional and will not preclude other conventions. This convention
is not part of the proposed binary table definition.

A.9.2 “Variable Length Array” Facility

One of the most attractive features of binary tables is that any field of the table can be
an array. In the standard case this is a fixed size array, i.e., a fixed amount of storage
is allocated in each record for the array data - whether it is used or not. This is fine so
long as the arrays are small or a fixed amount of array data will be stored in each record,
but if the stored array length varies for different records, it is necessary to impose a
fixed upper limit on the size of the array that can be stored. If this upper limit is made
too large excessive wasted space can result and the binary table mechanism becomes
seriously inefficient. If the limit is set too low then it may become impossible to store
certain types of data in the table.

NASA/OSSA Office of Standards and Technology

A.9. APPENDIXES TO DRAFT PROPOSAL FOR BINARY TABLES
EXTENSION 49

The “variable length array” construct presented here was devised to deal with this
problem. Variable length arrays are implemented in such a way that, even if a table
contains such arrays, a simple reader program which does not understand variable length
arrays will still be able to read the main table (in other words a table containing variable
length arrays conforms to the basic binary table standard). The implementation chosen
is such that the records in the main table remain fixed in size even if the table contains
a variable length array field, allowing efficient random access to the main table.

Variable length arrays are logically equivalent to regular static arrays, the only
differences being 1) the length of the stored array can differ for different records, and 2)
the array data is not stored directly in the table records. Since a field of any datatype can
be a static array, a field of any datatype can also be a variable length array (excluding
type P, the variable length array descriptor itself, which is not a datatype so much as a
storage class specifier). Conventions such as TDIMnnn apply equally to both to variable
length and static arrays.

A variable length array is declared in the table header with a special field datatype
specifier of the form

rPt(maxelem)

where the “P” indicates the amount of space occupied by the array descriptor in the
data record (64 bits), the element count “r” should be 0, 1, or absent, t is a character
denoting the datatype of the array data (L, X, B, I, J, etc., but not P), and maxelem is
a quantity guaranteed to be equal to or greater than the maximum number of elements
of type t actually stored in a table record. There is no built-in upper limit on the size
of a stored array; maxelem merely reflects the size of the largest array actually stored
in the table, and is provided to avoid the need to preview the table when, for example,
reading a table containing variable length elements into a database that supports only
fixed size arrays.

For example,

TFORM8 = ’PB(1800)° / Variable length byte array

indicates that field 8 of the table is a variable length array of type byte, with a maximum
stored array length not to exceed 1800 array elements (bytes in this case).

The data for the variable length arrays in a table is not stored in the actual data
records; it is stored in a special data area, the heap, following the last fixed size data
record. What is stored in the data record is an array descriptor. This consists of two 32
bit integer values: the number of elements (array length) of the stored array, followed
by the zero-indexed byte offset of the first element of the array, measured from the start
of the heap area. Storage for the array is contiguous. The array descriptor for field N
as it would appear embedded in a data record is illustrated symbolically below.

field N-1 ; { nelem offset } ; field N+1

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE
50 EXTENSION

If the stored array length is zero there is no array data, and the offset value is undefined
(it should be set to zero). The storage referenced by an array descriptor must lie entirely
within the heap area; negative offsets are not permitted.

A binary table containing variable length arrays consists of three main segments, as
follows:

table header
record storage area (data records)
heap area (variable array data)

The table header consists of one or more 2880 byte FITS logical records with the
last record indicated by the keyword END somewhere in the record. The record storage
area begins with the next 2880 byte logical record following the last header record and is
NAXIS1*NAXIS2 bytes in length. The zero indexed byte offset of the heap measured from
the start of the record storage area is given by the THEAP keyword in the header. If this
keyword is missing the heap is assumed to begin with the byte immediately following
the last data record, otherwise there may be a gap between the last stored record and
the start of the heap. If there is no gap the value of the heap offset is NAXIS1*NAXIS2.
The total length in bytes of the area following the last stored record (gap plus heap) is
given by the PCOUNT keyword in the table header.

For example, suppose we have a table containing 5 168 byte records, with a heap area
2880 bytes long, beginning at an offset of 2880, thereby aligning the record storage and
heap areas on FITS record boundaries (this alignment is not necessarily recommended
but is useful for our example). The data portion of the table consists of 2 2880 byte
FITS records, 840 bytes of which are used by the 5 table records, hence PCOUNT is
2*2880-840, or 4920 bytes.

NAXIS1 168 / Width of table row in bytes
NAXIS2 = 5 / Number of rows in table
PCOUNT 4920 / Random parameter count

THEAP

2880 / Byte offset of heap area

While the above description is sufficient to define the required features of the variable
length array implementation, some hints regarding usage of the variable length array
facility may also be useful.

Programs which read binary tables should take care to not assume more about the
physical layout of the table than is required by the specification. For example, there are
no requirements on the alignment of data within the heap. If efficient runtime access
is a concern one may want to design the table so that data arrays are aligned to the
size of an array element. In another case one might want to minimize storage and forgo

NASA/OSSA Office of Standards and Technology

A.9. APPENDIXES TO DRAFT PROPOSAL FOR BINARY TABLES
EXTENSION 51

any efforts at alignment (by careful design it is often possible to achieve both goals).
Variable array data may be stored in the heap in any order, i.e., the data for record
N+1 is not necessarily stored at a larger offset than that for record N. There may be
gaps in the heap where no data is stored. Pointer aliasing is permitted, i.e., the array
descriptors for two or more arrays may point to the same storage location (this could
be used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be used to store a “typeless” data
sequence. Since FITS is a machine independent storage format, some form of machine
specific data conversion (byte swapping, floating point format conversion) is implied
when accessing stored data with types such as integer and floating, but byte arrays are
copied to and from external storage without any form of conversion.

An important feature of variable length arrays is that it is possible that the stored
array length may be zero. This makes it possible to have a column of the table for
which, typically, no data is present in each stored record. When data is present the
stored array can be as large as necessary. This can be useful when storing complex
objects as records in a table.

Accessing a binary table stored on a random access storage medium is straightfor-
ward. Since the data records in the main table are fixed in size they may be randomly
accessed given the record number, by computing the offset. Once the record has been
read in, any variable length array data may be directly accessed using the element count
and offset given by the array descriptor stored in the data record.

Reading a binary table stored on a sequential access storage medium requires that
a table of array descriptors be built up as the main table records are read in. Once all
the table records have been read, the array descriptors are sorted by the offset of the
array data in the heap. As the heap data is read, arrays are extracted sequentially from
the heap and stored in the affected records using the back pointers to the record and
field from the table of array descriptors. Since array aliasing is permitted, it may be
necessary to store a given array in more than one field or record.

Variable length arrays are more complicated than regular static arrays and imply
an extra data access per array to fetch all the data for a record. For this reason, it is
recommended that regular static arrays be used instead of variable length arrays unless
efficiency or other considerations require the use of a variable array.

This facility is still undergoing trials and is not currently part of the main binary
table definition.

NOST FITS NOST FITS Definition

APPENDIX A. DRAFT PROPOSAL FOR BINARY TABLE
52 EXTENSION

NASA/OSSA Office of Standards and Technology

53

Appendix B

Implementation on Physical

Media

(This Appendix is not part of the NOST FITS Standard, but is included as a guide to
recommended practices.)

B.1 Block Size

The block size (physical record length) for transport of data should, where possible,
equal the logical record length or an integer blocking factor times this record length.
Standard values of the blocking factor may be specified for each medium; if not otherwise
specified, the expected value is unity.

B.1.1 Nine-Track, Half-Inch Magnetic Tape

For nine-track half-inch magnetic tapes conforming to the ANSI X3.40-1983 specifi-
cations [13], there should be from one to ten logical records per physical block. The
BLOCKED keyword (section 5.2.2.1) may be used to warn that there may be more than
one logical record per physical block. The last physical block of a FITS file should be
truncated to the minimum number of FITS logical records required to hold the remain-
ing data, in accordance with ANSI X3.27-1978 specifications [14]. With the issuance of
this standard, the BLOCKED keyword is deprecated by this document.

B.1.2 Other Media

For media where the physical block size cannot be equal to or an integral multiple of the
FITS logical record length of 23040-bits (2880 8-bit bytes), records should be written
over multiple blocks as a byte stream. Conventions regarding the relation between

NOST FITS NOST FITS Definition

54 APPENDIX B. IMPLEMENTATION ON PHYSICAL MEDIA

physical block size and logical record length of FITS files have not been otherwise
established for other media.

B.2 Physical Properties of Media

The arrangement of digital bits and other physical properties of any medium should
be in conformance with the relevant national and/or international standard for that
medium.

B.3 Labeling

B.3.1 Tape
Tapes may be either ANSI standard labeled or unlabeled. Unlabeled tapes are preferred.

B.3.2 Other Media

Conventions regarding labels for physical media containing FITS files have not been
established for other media.

B.4 FITS File Boundaries

B.4.1 Magnetic Reel Tape

Individual FITS files are terminated by a tape-mark.

B.4.2 Other Media

For media where the physical record size cannot be equal to or an integral multiple
of the standard FITS logical record length, a logical record of fewer than 23040 bits
(2880 8-bit bytes) immediately following the end of the primary header, data, or an
extension should be treated as an end-of-file. Otherwise, individual FITS files should
be terminated by a delimiter appropriate to the medium, analogous to the tape end-of-
file mark. If more than one FITS file appears on a physical structure, the appropriate
end-of-file indicator should immediately precede the start of the primary headers of all
files after the first.

B.5 Multiple Physical Volumes

Storage of a single FITS file on more than one unlabeled tape or on multiple units of
any other medium is not universally supported in FITS. One possible way to handle

NASA/OSSA Office of Standards and Technology

B.5. MULTIPLE PHYSICAL VOLUMES 55

multivolume unlabeled tape was suggested in [1].

NOST FITS NOST FITS Definition

56 APPENDIX B. IMPLEMENTATION ON PHYSICAL MEDIA

NASA/OSSA Office of Standards and Technology

57

Appendix C

Differences from IAU-endorsed
Publications

(This Appendix is not part of the NOST FITS Standard but is included for informa-
tional purposes only.)

Note: In this discussion, the term the FITS papers refers to [1], [2], [4], and [5],
collectively, and the term Floating Point Agreement (FPA) refers to [8].

1. Section 3 — Definitions, Acronyms, and Symbols

Array value — This precise definition is not used in the original FITS papers.

ASCII text — This permissible subset of the ASCII character set, used in many
contexts, is not precisely defined in the FITS papers.

Basic FITS — This definition includes the possibility of floating point data ar-
rays, while the terminology in the FITS papers refers to FITS as described
in [1], where only integer arrays were possible.

Conforming Extension — This terminology is not used in the FITS papers.
Deprecate — The concept of deprecation does not appear in the FITS papers.

FITS structure — This terminology is not used in the FITS papers in the precise
way that it is in this standard.

Header and Data Unit — This terminology is not used in the FITS papers.
Indexed keyword — This terminology is not used in the original FITS papers.
Physical value — This precise definition is not used in the original FITS papers.

Reference point — This term replaces the reference pizel of the FITS papers.
The new terminology is consistent with the fact that the array need not
represent a digital image and that the reference point (or pizel) need not lie
within the array.

NOST FITS NOST FITS Definition

APPENDIX C. DIFFERENCES FROM IAU-ENDORSED
58 PUBLICATIONS

Reserved keyword — The FITS papers describe optional keywords but do not
say explicitly that they are reserved.

Standard Extension — This precise definition is new. The term standard ez-
tension is used in some contexts in the FITS papers to refer to what this
standard defines as a standard extension and in others to refer to what this
standard defines as a conforming extension.

2. Section 4.3.2 Primary Data Array
Fill format — This specification is new. The FITS papers and the FPA do not
precisely specify the format of data fill for the primary data array.

3. Section 4.4.1.1 Identity (of conforming extensions)
The FITS papers specify that creators of new extension types should check with
the FITS standards committee. This standard identifies the committee specifi-
cally, introduces the role of the NOST as its agent, and mandates registration.

4. Section 5.1.2.1 Keyword (as header component)
The specification of permissible keyword characters is new. The FITS papers do
not precisely define the permissible characters for keywords.

5. Section 5.2.1.1 Principal (mandatory keywords)

(a) NAXIS keyword — The requirement that the NAXIS keyword may not be neg-
ative is not explicitly specified in the FITS papers.

(b) NAXISn keyword — The requirement that the NAXISn keyword may not be
negative is not explicitly specified in the FITS papers.

6. Section 5.2.1.2 Conforming Extensions

(a) NBITS — The requirement that NBITS may not be negative is not explicitly
specified in the FITS papers.

(b) XTENSION keyword — That this keyword may not appear in the primary header
is only implied by the FITS papers; the prohibition is explicit in this stan-
dard. The FITS papers name a FITS standards committee as the keeper of
the list of accepted extension type names. This standard specifically identifies
the committee and introduces the role of the NOST as its agent.

7. Section 5.2.2 Other Reserved Keywords
That the optional keywords defined in the FITS papers are to be reserved with the
meanings and usage defined in those papers, as in the standard, is not explicitly
stated in them.

8. Section 5.2.2.1 Keywords Describing the History...

NASA/OSSA Office of Standards and Technology

59

(a)
(b)

DATE Keyword — The recommendation for use of Universal Time is not in the
FITS papers.

BLOCKED keyword — The FITS papers require the BLOCKED keyword to appear
in the first record of the primary header even though it cannot when the
value of NAXIS exceeds the values described in the text. They do not address
this contradiction. Deprecation of the BLOCKED keyword is new with this
standard.

9. Section 5.2.2.2 Keywords Describing Observations

(a)
(b)

DATE-0BS Keyword — The recommendation for use of Universal Time is not
in the FITS papers.

EQUINOX and EPOCH keywords — This standard replaces the EPOCH keyword
with the more appropriately named EQUINOX keyword and deprecates the
EPOCH name.

10. Section 5.2.2.4 Commentary keywords
Keyword field is blank — Reference [1] contains the text “BLANK?” to represent a
blank keyword field. The standard clarifies the intention.

11. Section 5.2.2.5 Array keywords

(a)

BUNIT Keyword — The FITS papers recommend the use of SI units and
identify other units standard in astronomy. This standard makes the recom-
mendation more specific by referring to the IAU Style Manual [7].

CTYPEn Keywords — This standard extends the recommendations on units to
coordinate axes.

CRPIXn Keywords — This standard explicitly notes the ambiguity in the lo-
cation of the index number relative to an image pixel.

CDELTn Keywords — The definition in the standard differs from that in the
FITS papers in that it provides for the case where the spacing between index
points varies over the grid. For the case of constant spacing, it is identical to
the specification in the FITS papers.

DATAMAX and DATAMIN Keywords — The standard clarifies that the value refers
to the physical value represented by the array, after any scaling, not the array
value before scaling. The standard also notes that special values are not to
be considered when determining the values of DATAMAX and DATAMIN, an issue
not specifically addressed by the FITS papers or the FPA.

12. Section 5.3.1 General Format Requirements
The FITS papers specify that the value field is to be written following the rules

NOST FITS NOST FITS Definition

APPENDIX C. DIFFERENCES FROM IAU-ENDORSED

60 PUBLICATIONS
of ANSI FORTRAN list-directed input, with some restrictions. The standard
incorporates such restrictions by explicitly noting that formats may be otherwise
specified in the Standard.

13. Section 5.3.2.1 Character String (fixed format)

The standard explicitly describes how single quotes are to be coded into keyword
values, a rule only implied by the FORTRAN-77 list-directed read requirements
of the FITS papers.

14. Section 5.3.2.3 Integer (fixed format) The standard explicitly notes that the fixed
format for complex integers does not conform to the rules for ANSI FORTRAN
list-directed read.

15. Section 5.3.2.4 Real Floating Point Number (fixed format)

The standard explicitly notes that the full precision of 64-bit values cannot be
expressed as a single value using the fixed format.

16. Section 5.3.2.4 Complex Floating Point Number (fixed format)

The standard explicitly notes that the fixed format for complex floating point
numbers does not conform to the rules for ANSI FORTRAN list-directed read. It
notes also that the full precision of 64-bit values cannot be expressed as a single
value using the fixed format.

17. Section 7 Random Groups Structure
The standard deprecates the Random Groups structure.

18. Section 7.1.2 Reserved keywords (random groups)

That the optional keywords defined in the FITS papers are to be reserved with the
meanings and usage defined in those papers, as in the standard, is not explicitly
stated in them.

19. Section 7.1.2.2 PSCALn Keywords — The default value is explicitly specified in the
standard, whereas in the FITS papers it is assumed by analogy with the BSCALE
keyword.

20. Section 7.1.2.3 PZEROn Keywords — The default value is explicitly specified in the
standard, whereas in the FITS papers it is assumed by analogy with the BZERO
keyword.

21. Section 8.1 ASCII Tables Extension
The name ASCII Tables is given to the Tables extension discussed in the FITS
papers to distinguish it from binary tables.

22. Section 8.1.1 Mandatory Keywords (ASCII tables)

NASA/OSSA Office of Standards and Technology

61

(a) NAXIS1 keyword — The requirement that the NAXIS1 keyword may not be
negative in an ASCII table header is not explicitly specified in the FITS
papers.

(b) NAXIS2 keyword — The requirement that the NAXIS2 keyword may not be
negative in an ASCII table header is not explicitly specified in the FITS
papers.

(c) TFIELDS keyword — The requirement that the TFIELDS keyword may not be
negative is not explicitly specified in the FITS papers.

23. Section 8.1.2 Other Reserved Keywords (ASCII tables)
That the optional keywords defined in the FITS papers are to be reserved with the
meanings and usage defined in those papers, as in the standard, is not explicitly
stated in them.

(a) TUNITn Keyword — The FITS papers do not explicitly recommend the use
of any particular units for this keyword, although the reference to the BUNIT
keyword may be considered an implicit extension of the recommendation for
that keyword. This standard makes the recommendation more specific for
the TUNITn keyword by referring to the IAU Style Manual [7].

(b) TSCALn Keyword — The prohibition against use in A-format fields is stronger
than the statement in the FITS papers that the keyword “is not relevant”.

(c) TZEROn Keywords — The prohibition against use in A-format fields is stronger
than the statement in the FITS papers that the keyword “is not relevant”.

24. Section 9 Restrictions on Changes
The concept of deprecation is not provided for in the FITS papers.

25. Appendix B Implementation on Physical Media
Material in the FITS papers specifying the expression of FITS on specific physical
media is not part of this Standard.

NOST FITS NOST FITS Definition

APPENDIX C. DIFFERENCES FROM IAU-ENDORSED
62 PUBLICATIONS

NASA/OSSA Office of Standards and Technology

63

Appendix D

Summary of Keywords

(This Appendix is not part of the NOST FITS Standard, but is included for convenient

reference).

Principal Conforming ASCII Table

Random Groups Proposed Binary

HDU Extension Extension Records Table Extension
SIMPLE XTENSION XTENSION! SIMPLE XTENSION?
BITPIX BITPIX BITPIX = 8 BITPIX BITPIX = 8
NAXIS NAXIS NAXIS = 2 NAXIS NAXIS = 2
NAXISn NAXISn NAXIS1 NAXIS1 0 NAXIS1
EXTEND3 PCOUNT NAXIS2 NAXISn NAXIS2
END GCOUNT PCOUNT = 0 GROUPS T PCOUNT

END GCOUNT = 1 PCOUNT GCOUNT = 1
TFIELDS GCOUNT TFIELDS
TBCOLn END TFORMn
TFORMn END
END

L XTENSION=,’TABLE,,’ for the ASCII Table extension.
2 XTENSION=,,’BINTABLE’ for the proposed binary table extension.
3 Required only if extensions are present.

Table D.1: Mandatory FITS keywords for the structures described in this document.

NOST FITS NOST FITS Definition

64 APPENDIX D. SUMMARY OF KEYWORDS

Principal HDU Conforming ASCII Table Random Groups Binary Table

General Array Extension Extension Records Extension
DATE BSCALE EXTNAME TSCALn PTYPEn TSCALn
ORIGIN BZERO EXTVER TZEROn PSCALn TZEROn
BLOCKED BUNIT EXTLEVEL TNULLn PZEROn TNULLn
AUTHOR BLANK TTYPEn TTYPEn
REFERENC CTYPEn TUNITn TUNITn
COMMENT CRPIXn TDISPn
HISTORY CROTAn TDIMn
vuuuuuun CRVALn THEAP

DATE-0BS CDELTn
TELESCOP DATAMAX
INSTRUME DATAMIN
OBSERVER

0BJECT

EQUINOX

EPOCH

Table D.2: Reserved FITS keywords for the structures described in this document.
Note that the EPOCH and BLOCKED keywords are deprecated by this document.

Production Bibliographic Commentary Observation Array

DATE AUTHOR COMMENT DATE-0BS BSCALE
ORIGIN REFERENC HISTORY TELESCOP BZERD
BLOCKED LuLLLLLL INSTRUME BUNIT
OBSERVER BLANK

0BJECT CTYPEn

EQUINOX CRPIXn

EPOCH CROTAn

CRVALn

CDELTn

DATAMAX

DATAMIN

Table D.3: General Reserved FITS keywords described in this document. Note that
the EPOCH and BLOCKED keywords are deprecated by this document.

NASA/OSSA Office of Standards and Technology

65

Appendix E

ASCII Text

(This appendix is not part of the NOST FITS standard; the material in it is taken from
the ANSI standard for ASCII [11] and is included here for informational purposes.)

In the following table, the first column is the decimal and the second column the
hexadecimal value for the character in the third column. The characters hexadecimal 20
to 7TE (decimal 32 to 126) constitute the subset referred to in this document as ASCII
text.

NOST FITS NOST FITS Definition

66 APPENDIX E. ASCII TEXT

ASCII Control ASCII Text

dec hex char || dec hex char | dec hex char | dec hex char
0 00 NUL ({32 20 SP 64 40 @ 96 60 ¢
1 01 SOH || 33 21 ! 66 41 A 97 61 a
2 02 STX |34 22 v 66 42 B 98 62 b
3 03 ETX (|35 23 # 67 43 C 99 63 ¢
4 04 EOT (|36 24 ¢ 68 44 D 100 64 d
5 05 ENQ (|37 25 % 69 45 E 101 65 e
6 06 ACK (|38 26 & 70 46 F 102 66 f
7 07 BEL (| 39 27 ’ 1 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 1 105 69 i
10 0A LF 42 2A * 74 4A] 106 6A j
11 0B VT 43 2B + 7 4B K 107 6B k
12 0C FF 4 2C 76 4C L 108 6C 1
13 0D CR 45 2D - 77 4D M 109 6D m
14 O0E SO 46 2E . 78 4E N 110 6E n
15 O0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE (|48 30 0 80 50 P 112 70 p
17 11 DC1 ||49 31 1 81 51 Q 113 71 ¢q
18 12 DC2 ||50 32 2 82 52 R 114 72 r
19 13 DC3 (|51 33 3 83 53 S 115 73 s
20 14 DC4 (|52 34 4 84 54 T 116 74 t
21 15 NAK (|53 35 5 8 55 U 117 75 u
22 16 SYN |54 36 6 86 56 V 118 76 v
23 17 ETB (|55 37 7 87 57T W 119 77 w
24 18 CAN |56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB || 58 3A 90 bHA Z 122 7A z
27 1B ESC |59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D @GS 61 3D = 93 5D 1] 126 7D }
30 1E RS 62 3E > 94 bHE ~ 126 7TE ~
31 1F US 63 3F 7 95 bHF _ 127 7F DEL!

1 Not ASCII Text

Table E.1: ASCII character set

NASA/OSSA Office of Standards and Technology

67

Appendix F

IEEE Special Formats

(The material in this Appendix is not part of this standard; it is taken from the IEEE-
754 floating point standard [12], for informational purposes. It is not intended to be
a comprehensive description of the IEEE special formats; readers should refer to the
IEEE standard.)

Table F.1 displays the hexadecimal contents, most significant byte first, of the double
and single precision IEEE special values.

NOST FITS NOST FITS Definition

APPENDIX F. IEEE SPECIAL FORMATS

IEEE special value

Double Precision

Single Precision

-0 8000000000000000 80000000
400 7FF0000000000000 7F800000
—00 FFF0000000000000 FF800000
NaN! 7FF0000000000001 7F800001
to to
[0 50 30 S S S S S S S S (FEEFEEE
and and
FFF0000000000001 FF800001
to to
0 S o 2 S S S o 2 S S o S FFEEFEEE
positive overflow 7FEFFFFFFFFFFFFF TFTFFFFF
negative overflow FFEFFFFFFFFFFFFF FF7FFFFF
positive underflow 0010000000000000 00800000
negative underflow 8010000000000000 80800000
denormalized 0000000000000001 00000001
to to
OOOFFFFFFFFFFFFF OO7FFFFF
and and
8000000000000001 80000001
to to
800FFFFFFFFFFFFF 807FFFFF

! Certain values may be designated as quiet NaN (no diagnostic when used) or signaling
(produces diagnostic when used) by particular implementations.

Table F.1: IEEE special floating point formats

NASA/OSSA Office of Standards and Technology

69

Appendix G

Reserved Extension Type Names

(This Appendix is not part of the NOST FITS Standard, but is included for informa-
tional purposes. It describes the extension type names registered as of the date this
standard was issued. A current list is available from the NOST.)

NOST FITS NOST FITS Definition

70 APPENDIX G. RESERVED EXTENSION TYPE NAMES

Type Name Status Reference Sponsor Comments

’A3DTABLE’ L [15] NRAO Prototype binary table design
supported in AIPS; superseded
by BINTABLE, which supports
all ASDTABLE features.

’BINTABLE’ D [9] TAU Draft proposal for

NRAO binary table design.

NOAO
’DUMPLLL’ R none none Intended for binary dumps.
’FILEMARK’ R none NRAO Intended for structure to

represent equivalent of
tape mark on other media.

’IMAGE ..’ D [16] IUE Draft proposal extension containing
a multidimensional matrix.

’IUEIMAGE’ L [17] IUE Prototype matrix extension used for
archiving IUE products,
superseded by IMAGE.

TABLE .’ S [5] IAU ASCII Tables.

Table G.1: Reserved Extension Type Names

NASA/OSSA Office of Standards and Technology

71

Code Significance
D Draft extension proposal for discussion by regional FITS committees.
L Local FITS extension.
P Proposed FITS extension approved by regional FITS committees
but not by IAU FITS Working Group.
R Reserved type name for which a full draft proposal has not been submitted.
S Standard extension approved by IAU FITS Working Group and

endorsed by the TAU.

Table G.2: Status Codes

NOST FITS NOST FITS Definition

72 APPENDIX G. RESERVED EXTENSION TYPE NAMES

NASA/OSSA Office of Standards and Technology

73

Appendix H

NOST Publications

Document Title Date Status
NOST 100-0.1 FITS Standard December, 1990 Draft Standard
NOST 100-0.2 FITS Implementation Standard June, 1991 Revised Draft Standard
NOST 100-0.3 FITS Implementation Standard December, 1991 Revised Draft Standard
NOST 100-1.0 FITS Definition Standard March, 1993 Proposed Standard
NOST 100-1.0 FITS Definition Standard June, 1993 NOST Standard

Table H.1: NOST Publications

NOST FITS NOST FITS Definition

74 APPENDIX H. NOST PUBLICATIONS

NASA/OSSA Office of Standards and Technology

INDEX

75

Index

' 22
/5 13

A3DTABLE, 70

A3DTABLE, extension, 39

ATPS, 5, 39, 70

ATPS, Going, 4

alignment, word, 44

ANSI, 5

ANSI, ASCII, 4

ANSI, FORTRAN, 21, 43

ANSI, FORTRAN-77, 3

ANSI, IEEE, 4, 24

ANSI, tapes, 4, 54

ANSI, X3.27-1978, 4, 53

ANSI, X3.4-1977,4

ANSI, X3.40-1976, 4

ANSI, X3.40-1983, 53

ANSI, X3.9-1978, 3

array, 5, 19

array, multidimensional, 10, 11, 43, 48

array, size, 14, 16, 27, 30

array, value, 5, 7, 19, 57, 59

array, variable length, 42, 49

ASCII tables, vii, 1-3, 31, 40, 60, 69

ASCII, ANSI, 4

ASCII, character, 5, 23, 31, 34, 45, 65

ASCII, characters, 2

ASCII, text, vii, 2, 5, 9, 10, 14, 18, 19,
22, 34, 57, 65

AUTHOR, 18, 43

Basic FITS, vii, 1, 5, 57
binary tables, 1-3, 27, 39, 63

BINTABLE, 41, 70

BINTABLE, extension, 39, 63, 69

bit array, 44

BITPIX, 14-16, 19, 20, 24, 27, 28, 31,
41

BLANK, 19, 24, 59

BLOCKED, 17, 21, 53, 59, 64

BSCALE, 19, 24, 60

BUNIT, 19, 59, 61

byte order, 23, 24

BZERO, 19, 24, 60

card image, 5, 10, 13

case, sensitivity, 13, 21

CDELTn, 20, 59

character string, 21, 22, 45, 48, 60

COMMENT, 18

complex, double, 42

complex, floating point, 22, 42, 45, 60

complex, integer, 22, 60

conforming extension, 2, 6, 8-11, 15, 39,
57, 58

coordinate, axis, 8, 19, 59

coordinate, system, 18, 20

coordinate, value, 20

CROTAn, 20

CRPIXn, 20, 59

CRVALn, 20

CTYPEn, 19, 20, 59

data, invalid, 42
DATAMAX, 20, 59
DATAMIN, 20, 59
DATE, 17, 59

NOST FITS NOST FITS Definition

76

INDEX

DATE-OBS, 17, 59

deprecate, 2, 6, 17, 18, 27, 37, 53, 57,
59, 60

DUMP, 70

END, 15, 29, 32, 42

EPOCH, 18, 59, 64

EQUINOX, 18, 59

EXTEND, 15, 17, 21, 31, 40

extension, vii, 1, 2, 6, 8-11, 20, 21, 23,
39, 40, 54, 58, 69

extension, conforming, 2, 6, 8-11, 15, 39,
57, 58

extension, name, 6

extension, registration, 10, 58

extension, standard, 8, 11, 16, 31, 58

extension, type name, 10, 11

EXTLEVEL, 21, 42

EXTNAME, 6, 20, 42

EXTVER, 21, 42

FILEMARK, 70

fill, 10, 13, 30, 33, 34, 58

FITS, IUE, 4

FITS, structure, 2, 5-7, 9, 11, 17, 37, 57

FITS, Working Group, vii, 1, 10, 16, 39

floating point, 6, 10, 22, 45, 67

floating point, 64 bit, 24, 60

floating point, complex, 22, 45

floating point, FITS agreement, vii, 3,
57

floating point, format, 67

format, 32

format, data, vii, 23

format, extension, 6

format, fixed, 21, 60

format, keywords, 21

format, standard, 1

FORTRAN-77, ANSI manual, 3

FORTRAN-77, format, 32, 34

FORTRAN-77, list-directed read, 21, 22

GCOUNT, 16, 17, 27, 29, 30, 32, 41
Going AIPS, 4
group parameter value, 6, 29, 30

GROUPS, 28

HDU, 7, 17

HDU, extension, 6, 9
HDU, primary, 6-11
HISTORY, 18
hyphen, 13

IAU, vii, 1-3, 7, 57, 70

TAU, 1988 General Assembly, vii

TAU, Commission 5, vii, 1, 10, 16

TAU, Style Manual, 3, 19, 34, 59, 61

IEEE, 7, 39

IEEE, ANSI, 4

IEEE, floating point, 24, 25

IEEE, floating point +0.0, 10

IEEE, NaN, 7, 24, 25, 45

IEEE, special format, 67

IEEE, special values, 2, 7, 20, 24, 25, 45,
59

IMAGE, 70

indexed, keyword, 13, 15, 57

INSTRUME, 18

integer value, 22, 42, 44

integer value, 16 bit, 23

integer value, 32 bit, 23

integer value, 8 bit, 23

integer value, complex, 22

interferometry, 27

IUE, 7

IUEIMAGE, 70

keyword, commentary, 13, 18

keyword, indexed, 7, 13, 57

keyword, new, 21

keyword, order, 14, 16, 27, 31, 41

keyword, required, 1, 2, 7, 14-16, 27, 31,
41, 58, 61

NASA/OSSA Office of Standards and Technology

INDEX

77

keyword, reserved, 1, 2, 8,17, 29, 33, 58,
60, 61

keyword, restrictions, 21

keyword, valid characters, 13

list-directed, read, 21, 22, 60
logical value, 22, 42, 44

MIDAS, 7

multidimensional entries, 43, 48

NAXIS, 10, 14, 15, 17, 27, 28, 30, 31,
41, 58, 59

NAXIS1, 28, 31, 34, 41, 42, 50, 61

NAXIS?2, 31, 34, 41, 50, 61

NAXISn, 10, 14-16, 20, 27, 28, 30, 58

NBITS, 14, 16, 27, 58

NOAO, 7, 70

NOST, 7, 10, 16, 58

NRAO, 7, 39, 70

OBJECT, 18

OBSERVER, 18

order, array index, 10, 43, 48

order, bit, 44

order, byte, 23, 24

order, characters, 45

order, extensions, 11

order, FITS structures, 9

order, keyword, 13, 14, 16, 27, 31, 41
order, variable array, 51

ORIGIN, 17

parameter, vii, 29, 30

PCOUNT, 16, 17, 27, 29-31, 41, 50

physical value, 7, 19, 20, 29, 30, 33, 57,
59

physical, value, 5

primary data array, 5, 7, 9, 10, 16, 19,
27, 28, 30, 58

primary header, 2, 5, 7, 9, 14-16, 21, 27,
54, 59

PSCALR, 29, 30, 60
PTYPEn, 29, 30
PZEROR, 29, 30, 60

random groups, vii, 1-3, 6,9, 11, 19, 27,
60

random groups, array, vii, 30

REFERENC, 18, 43

reference point, 8, 20, 57

registration, extension, 10

scaling, data, 19, 29, 30, 33, 42, 59
sign, bit, 23, 24

sign, character, 34

SIMPLE, 27

SIMPLE, in primary header, 14, 15
SIMPLE, in special records, 12
slash, 13

special records, 6, 8, 9, 12

standard extension, 8, 11, 16, 31, 58

TABLE, 31, 60, 70
TABLE, extension, 31, 63
tape, 9-track half-inch, vii, 53
TBCOLn, 32

TDIMnnn, 43, 48, 49
TDISPnnn, 41, 43
TELESCOP, 18
TFIELDS, 32, 41, 61
TFORMn, 32, 41, 42, 48
THEAP, 43, 50

TNULLn, 33, 34, 41, 42
TSCALn, 33, 34, 42-44, 61
TTYPEn, 33, 41, 42
TUNITn, 34, 41, 42, 61
twos-complement, 23, 44
TZEROn, 33, 34, 42-44, 61

underscore, 13
units, 19, 34, 59
Universal Time, 17, 59

value, invalid, 44

NOST FITS NOST FITS Definition

78 INDEX

value, null, 44
value, undefined, 33, 34, 42
variable length array, 42, 49

XTENSION, 8, 12, 16, 20, 31, 41, 58

NASA/OSSA Office of Standards and Technology

