The evolution of bright galaxies at z > 6

the power of degree-scale, near-infrared surveys

Rebecca Bowler Hintze Fellow, University of Oxford

with Jim Dunlop, Ross McLure, Matt Jarvis, Derek McLeod, H. Furusawa, Y. Taniguchi and the UltraVISTA team

- ★ Canada-France-Hawaii Telescope [Legacy Survey, 4 deg²]
- ★ Suprime-Cam from Subaru [COSMOS/UDS/SDF+]
- ★ Hawk-I on the VLT
- ★ FourStar/Magellan-Baade Telescope (zFourge, medium-band filters)
- ★ Visible and Infrared Survey Telescope (VISTA)
- ★ UK infrared telescope (UKIRT)

Subaru/Suprime-Cam

★ Subaru Deep Field [~0.25 deg²]

z ~ 5-6

e.g. Kashikawa et al. 2006 Jiang et al. 2013ab, 2016 Ota et al. 2008

z~7

★ Subaru XMM-Newton Deep Survey (aka UKIDSS UDS) [~1 deg²]

e.g. McLure et al. 2006, 2009 Curtis-Lake et al. 2012, 2013 Rogers et al. 2014 Yoshida et al. 2006

e.g. Ouchi et al. 2010 Furusawa et al. 2016 Konno et al. 2014 Ono et al. 2010

★ COSMOS survey (+deep z'-band from Furusawa+16) [~2 deg²]

e.g. Willott et al. 2013 Bowler et al. 2015 VUDS: Le Fevre et al. 2014 Van der Burg et al. 2010

e.g. Taniguchi et al. 2009 Capak et al. 2011 Bowler et al. 2014 Matthee et al. 2015

stellar pops.

The key role of near-infrared data

★ Near-infrared essential for the detection of optical drop-outs!

★ And for the identification of contaminants...

Low-z galaxy

Galactic brown dwarf

High-z galaxy

The key role of near-infrared data

★ Deep optical + near-infrared photometry constrains high-z nature

High-z galaxy

Low-z galaxy

Contamination by cool galactic brown dwarfs

Water + methane absorption

Bowler et al. 2015

★ Constraining the luminosity function

★ Probing astrophysics at high-redshift

★ Accessible laboratories into the EoR

★ Constraining the luminosity function

★ Probing astrophysics at high-redshift

SDF + GN Ouchi et al. 2009

Only HST

★ Accessible laboratories into the EoR

Including ground-based data (Subaru Deep Field)

★ Constraining the luminosity function

Silk & Mamon 2012

Simulations

★ Probing astrophysics at high-redshift

★ Accessible laboratories into the EoR

Bowler et al. 2015

★ Constraining the luminosity function [CII] 158 microns (z = 5-6) Capak et al. 2015

★ Probing astrophysics at high-redshift

★ Accessible laboratories into the EoR

Stark et al. 2017, Zitrin et al. 2015

Finding z ~ 7 LBGs in the COSMOS + UDS

UltraVISTA/COSMOS

filters	telescope/program	AB 5o depth
u*, g, r, i, z	CFHTLS	~ 27
i (814)	HST/ACS	~ 27
Z'	Subaru	~ 26.5
Y, J, H, Ks	UltraVISTA DR2	~ 24-25, 25-26
3.6µm, 4.5µm	<i>Spitzer</i> /SPLASH	~ 25

UDS/SXDS

filters	telescope/program	AB depth
B, V, R, i	Subaru/SXDS	~ 27
Z'	Subaru (HF+16)	~ 26.5
Y	VISTA VIDEO	~ 25
J, H, K	UKIRT/UKIDSS	~ 25-26
3.6µm, 4.5µm	<i>Spitzer</i> /SPLASH	~ 25

Need wide-area, near-IR surveys!

Need wide-area, near-IR surveys!

Brightest point from full CANDELS only ~ 1 galaxy

Previous CFHT/ UKIRT data not deep enough ("LBGs" all at z ~ 2)

UltraVISTA DR2 + UDS/SXDS

1.65 sq. degrees

34 galaxies (including 9/10 Bowler et al. 2012 objects)

0.5-1 mag deeper near-IR data than DR1

UltraVISTA DR2 + UDS/SXDS

1.65 sq. degrees

34 galaxies (including 9/10 Bowler et al. 2012 objects)

0.5-1 mag deeper near-IR data than DR1

Quasar contamination / lensing

Quasar contamination / lensing

z = 3 LF from Bian et al. 2013

Quasar contamination negligible

Quasar contamination / lensing

see also Mason et al. 2015, Fialkov et al. 2015, Barone-Nugent et al. 2015

 \star Is there an evolution in shape?

-> As predicted by onset of **feedback**? -> Or from simulations which impose significant **dust** obscuration to match UV LF observations?

★ What is the form of the evolution?

Bouwens et al. 2011 (also e.g. McLure et al. 2009)

> Density (phi*) evolution?

Bouwens et al. 2015 (also Finkelstein et al. 2015)

CFHTLS @ z = 5, COSMOS/UDS @ z = 6-7

(Van der Burg et al. 2010)

Steepening of the bright-end at z < 7?

- ★ Not a consensus on the form of the evolution at z = 5-7
- ★ Ground-based data show an evolution in M*
- ★ Is a Schechter function appropriate? More power-law like?

Constraining the knee of the $z \sim 7 LF$ Knee of the LF at $z \sim 7$ still uncertain...

2014

2016

Future HSC + UltraVISTA DR3 + UDS/SXDS will help

see Bouwens et al. 2015, Finkelstein et al. 2015ab

Cosmic variance in the LF at z ~ 6

~ 2 x the number density of bright galaxies in JItraVISTA/COSMOS compared to the UDS/SXDS

McLure et al. 2009 ~ 0.6 sq. degree UDS/SXDS field

z = 6 luminosity function from SXDS/UDS + COSMOS/UltraVISTA (Bowler et al. 2015)

Cosmic variance in the LF at z ~ 6

Also in CFHTLS (Willott et al. 2013)

And under-density of LAEs in SXDS (Ouchi et al. 2005)

Large degree-scale fields with multiple sight-lines are required!

→ HSC
 → Euclid/LSST (40 deg²)

Revealing the nature of bright LBGs

These samples include the **brightest** known $z \sim 7$ galaxies, which are ideal targets for detailed follow-up:

... in relatively modest integration times:

few hours with near-IR spectrographs (e.g. Oesch+2015, Roberts-Borsani+2015...)

modest integrations with ALMA (e.g. Capak+2015, Maolino+2015...)

Revealing the nature of bright LBGs

HST can reveal sizes/ morphologies that are elusive in ground-based data

Optical and near-infrared spectroscopy can reveal rest-UV emission lines

ALMA provides unique view of dust emission

Revealing the nature of bright LBGs

HST can reveal sizes/ morphologies that are elusive in ground-based data

HST/WFC3 imaging of bright LBGs

Ouchi et al. 2009, 2013

Sobral et al. 2015

- The brightest Lyman-break galaxies at z ~ 7 are composed of multiple clumps at HST resolution - mergers or SF clumps?
- Magnitude limited sample, not selected for line emission

Bowler et al. 2016a

see also Jiang et al. 2013, Kawamata et al. 2015...

Measuring the sizes of bright LBGs

Size measurement method and interpretation challenging
Sizes can be inferred from the ground...

Bowler et al. 2016a

Upcoming and ongoing near-infrared surveys

 ★ UltraVISTA
 Extension will fill in 'gaps' to provide complete 1.5 deg²
 to 25-26 JHKs (y from HSC) ★ VIDEO -> VEILS CDFS, Elias-S1, XMM-LSS 12 deg² to ~ 23.5-24.5 YJHKs Extension will double area

★ Euclid - 40 deg² in deep fields should detect
 ~3000 LBGs @ z ~ 7 (and ~ 1000 in wide fields)

Summary

★ Near-infrared data is key for finding and studying z ~> 7 galaxies
 ★ Current leading fields are UltraVISTA/COSMOS and UDS/SXDS
 ★ Evolution in the rest-frame UV LF is around the knee (-> DPL?)
 ★ Bright galaxies are interesting! And ideal laboratories for further study

Exciting current and future science (biased!)

- ★ Form and evolution of the bright-end at $z \sim 7$ and z > 7
- \star Lyman-a escape and astrophysics of UV/optical emission lines
- ★ More CR7/Himiko type-objects? Density of ~ 1 per deg²
- \star Overlap with quasars

×

- \star Probing the dark matter haloes via clustering
- ★ The rest-frame optical view with JWST mergers or clumpy objects?