The gas at dawn: Star formation efficiency at z~3

Brent Groves (ANU) Eva Schinnerer (MPIA), Mark Sargent (Sussex), COSMOS-ALMA team

Australian Government Australian Research Council

Australian National University

 In the local universe we see a strong relation between gas and star: KS law

Kennicutt et al. (1998)

Brent Groves

In the local universe we see a strong relation between gas and stars: KS law On kpc scales see constant relation • $\tau_{dep} = 1/SFE = \Sigma_{gas}/\Sigma_{SFR}$

In the local universe we see a relation between gas and stars: KS law On kpc scales see constant relation • $\tau_{dep} = 1/SFE = \Sigma_{gas}/\Sigma_{SFR}$ But see possible variation with starbursts i.e. sSFR (=SFR/M*) = offset from the Main Sequence

In the local universe we see a relation between gas and stars: KS law On kpc scales see constant relation • $\tau_{dep} = 1/SFE = \Sigma_{gas}/\Sigma_{SFR}$ But see possible variation with starbursts i.e. sSFR (=SFR/M*) = offset from the Main Sequence

Galaxies growing: more food or faster ?

• SFR density has increased out to *z*=2 - 3

Brent Groves

Galaxies growing: more food or faster ?

- SFR density has increased out to z=2 - 3
- As has the SFR per galaxy

Galaxies growing: more food or faster

- SFR density has increased out to z=2 - 3
- As has the SFR per galaxy
- How much of this is because galaxies have more gas?
- And how much is because stars form more efficiently (T_{dep} is smaller)?

Bre

Galaxies growing: more food or faster ?

- How much of this is because galaxies have more gas?
- And how much is because stars form more efficiently (T_{dep} is smaller)?

We need to reliably measure the stellar and gas mass and SFR at z = 3 - 4 to answer this

Brent Groves

Reliable measures

- To reliably measure at high redshift:
 - stellar mass good rest-frame optical-NIR SED
 - SFR rest-frame UV+IR data
 - gas mass difficult to observe CO for a large sample so why not use dust continuum?

36 Nearby Galaxies

Key Insights into Nearby Galaxies: a Far-Infrared Survey with Herschel

The HINearby Galaxy Survey

The HI Nearby Galaxy Survey

HERACLES: The HERA CO Line Extragalactic Survey

Sub-mm vs Gas mass

Sub-mm vs Gas mass

Simple Estimator

$M_{gas}[M_{\odot}] = 28.5L_{500}[L_{\odot}]$

Dust Emission at long wavelengths can determine gas mass in massive galaxies (>10⁹M_☉) to ~30%
can also use 250µm, but with greater dispersion

Measuring gas at z~3 with ALMA

 A sample of Massive main-sequence galaxies at z>3 to help answer question:

 Is the increase in p_{SFR} with z more gas or more efficient star formation?

z~3-4 Massive LBGs with ALMA

- From COSMOS photo-z catalog selected 86 galaxies sampling main sequence
 2.8 < z < 3.6
- Cycle-2 proposal (PI Schinnerer) with Band 7 (~240 GHz)
- Measure dust continuum to determine gas mass

Schinnerer, BG et al (2016)

ALMA observations

240 GHz continuum rms ~ 65 - 70 μJy/beam beam of 0.7"x0.5"

55% detection rate (47/86) using 3σ detection limit

ALMA observations

240 GHz continuum rms ~ 65 - 70 μ Jy/beam beam of 0.7"x0.5"

55% detection rate (47/86) using 3σ detection limit

High-z Main sequence gas

- Detect 45/86 sources (2 low-z interlopers)
- Mostly photo-z (Laigle et al. in prep.)
 - 22 of our detections have secure spec-z (VUDS, zCOSMOS)
- M★ based on SED fit using SUBARU data (MAGPHYS)
- SFR UV+IR based on SED fit (MAGPYS)
- S_{240GHz} based on Gaussian fit (extraction software Karim et al. 2012)
- M_{gas} Groves et al. (2015) prescription (for 250/350µm rest-frame)
- Main Sequence definition of Sargent et al. (2014)

High-z Main sequence gas

• Detect 45/86 sources (2 low-z interlopers)

High-z Main sequence gas

Detect 45/86 sources (2 low-z interlopers)

Gas content!

Gas content!

Gas content!

Results - gas depletion time

sSFR vs gas

- Variation with sSFR is seen
- Too much scatter/uncertainty to be definite

KS at z ~3.2

 Our ALMA observations support predictions of Genzel and Sargent

 Most of the increase in SFR due to increased M_{gas}, with a smaller contribution by Star formation efficiency

 Do see trends with sSFR, but scatter is large

Why massive main sequence galaxies?

Brent Groves

Karim et al. (2011)

Schruba et al. (2011) Gas data

Groves et al. (2014)

Brent Groves

Moustakas et al. (2009) Metal gradients

Groves et al. (2014)

