Panorama of the Evolving Cosmos Hiroshima 28.11.-02.12.2016

COSMIC REIONIZATION: THEORETICAL MODELING AND CHALLENGING OBSERVATIONS

Benedetta Ciardi

Max Planck Institute for Astrophysics

Thanks to the LOFAR Epoch of Reionization Key Science Project

CONSTRAINTS ON THE EPOCH OF REIONIZATION

21 CM LINE OBSERVATIONS: BASICS

Ideal probe of neutral H at high-z different observed frqs. \rightarrow different z

Differential brightness temperature:

$$\delta T_b \approx \frac{T_s - T_{CMB}}{1 + z} \tau \propto n_{HI} \left(1 - T_{CMB} / T_s \right)$$

 $\begin{array}{ll} T_S = T_{CMB} \Longrightarrow & \mbox{no signal} \\ T_S < T_{CMB} \Longrightarrow & \mbox{absorption} \\ T_S > T_{CMB} \Longrightarrow & \mbox{emission} \end{array}$

The value of T_s is critical

21 CM LINE OBSERVATIONS: BASICS

Ideal probe of neutral H at high-z different observed frqs. \rightarrow different z

Differential brightness temperature:

$$\delta T_b \approx \frac{T_s - T_{CMB}}{1 + z} \tau \propto n_{HI} \left(1 - T_{CMB} / T_s \right)$$

 $\begin{array}{ll} T_S = T_{CMB} \Longrightarrow & \mbox{no signal} \\ T_S < T_{CMB} \Longrightarrow & \mbox{absorption} \\ T_S > T_{CMB} \Longrightarrow & \mbox{emission} \end{array}$

21 CM LINE OBSERVATIONS: WHAT?

♦ Tomography: topology of HII regions; information on sources; when reionization occurred

e.g. Tozzi+ 2000; BC & Madau 2003; Furlanetto, Sokasian, Hernquist 2004; Mellema+ 2006; Valdes+ 2006; Santos+ 2008; Baek+ 2009; Geil & Wyithe 2009; Zaroubi+ 2012; Malloy & Lidz 2013

 $\diamond \delta T_b$ fluctuations and Power Spectrum: statistical estimates

e.g. Madau, Meiksin & Rees 1997; Shaver+ 1999; Tozzi+ 2000; BC & Madau 2003; Furlanetto, Sokasian, Hernquist 2004; Mellema+ 2006; Valdes+ 2006; Datta+ 2008; Pritchard & Loeb 2008; Santos+ 2008; Baek+ 2009; Geil & Wyithe 2009; Patil+ 2014

 \diamond 21cm forest: information on HI along the l.o.s.

e.g. Carilli, Gnedin & Owen 2002; Furlanetto 2006; Xu+ 2009; Mack & Wyithe 2011; Meiksin 2011; Xu, Ferrara & Chen 2011; BC+ 2013; Vasiliev & Shchekinov 2012; Ewall-Wice at al. 2014; BC+ 2015; Semelin 2015

♦ Cross-correlation: information on typical dimension of HII regions

e.g. Salvaterra+ 2005; Lidz+ 2009; Jelic+ 2010; Wierma+ 2013 Fernandez+2013; Vrbanec+ 2016; Hutter+ 2016; Sobacchi+ 2016

LOFAR: LOW FREQUENCY ARRAY

LBA (10) 20 - 80 MHz isolated dipoles

HBA 115 - 240 MHz tiles (4x4 dipoles)

A station has 24/48/96 dipoles/tiles

Core:2 km18+ stationsNetherlands:80 km18+ stationsEurope:>1000 km9+ stations

IMAGING WITH LOFAR: QSOS' IONIZED REGIONS

Kakiichi+ 2016; Kakiichi+ in prep

Gadget-3 hydrodynamic simulations + CRASH 3D radiative tranfer

LOFAR could be able to detect large high-z HII regions

STATISTICAL MEASURES WITH LOFAR

Patil+ 2014

- ♦ Simulation in 600 cMpc with 21cmFast
- \Rightarrow Var(δT_b)=<P[k]> fitted with 2 parameters model: z_r and Δz
- \diamond Foregrounds, instrumental response, noise (600h) \rightarrow simulated data
- ♦ Signal variance is extracted from simulated data
- \diamond Estimate best fitting parameters

STATISTICAL MEASURES WITH LOFAR

Patil+ 2014

THE 21 CM FOREST

BC+ 2013, 2015

Hydrodynamic simulations + CRASH 3D radiative tranfer

THE 21 CM FOREST

BC+ 2013, 2015

z=10, S=50 mJy, α=1.05

BW=10 kHz, t=1000 h

Koopmans+ in prep.

t=1000 h

SKA-1 could probe in absorption scales ~ kHz

Wiersma+ 2013; Vrbanec+ 2016; Vrbanec+ in prep

Lidz+ 2009

♦ ~600³ cMpc³ Nbody+RT simulations (LOFAR FoV~5x5 deg²) ♦ LAEs model

lliev+ 2012; Jensen+ 2013

Wiersma+ 2013; Vrbanec+ 2016; Vrbanec+ in prep

 \diamond Intensity of the power spectrum \rightarrow volume average HI

Wiersma+ 2013; Vrbanec+ 2016; Vrbanec+ in prep

 \diamond Intensity of the power spectrum \rightarrow volume average HI

Wiersma+ 2013; Vrbanec+ 2016; Vrbanec+ in prep

2D circularly averaged cross power spectrum

 \diamond Intensity of the power spectrum \rightarrow volume average HI

Wiersma+ 2013; Vrbanec+ 2016; Vrbanec+ in prep

 \diamond Intensity of the power spectrum \rightarrow volume average HI

Wiersma+ 2013; Vrbanec+ 2016; Vrbanec+ in prep

 \diamond Intensity of the power spectrum \rightarrow volume average HI

CONCLUSIONS

- ♦ Imaging of high-z QSOs' HII regions should be possible with a S/N~few
- \diamond LOFAR should reveal statistical information on duration and peak of the EoR
- ♦ 21cm forest is feasible IF a high-z radio-loud source is found or by stacking
- ♦ Cross-correlation with high-z LAEs should reveal anti-correlation on large scales